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Abstract

Passive monitoring is an important tool for measuring,
troubleshooting, and protecting modern wireless networks.
To date, WiFi monitoring has focused primarily on indoor
settings or ephemeral outdoor studies though wardriving. We
present Argos, the first urban-scale wireless sensor network
designed explicitly to support measurement of ambient WiFi
traffic across an entire city. Urban-scale wireless monitor-
ing presents unique challenges due to limited packet-capture
ability, heterogeneous traffic loads, and limited backhaul ca-
pacity between sensor nodes. Argos addresses these through
in-network traffic merging and processing, plus an intelligent
approach to coordinated channel sampling by multiple snif-
fers. Argos provides a rich query interface allowing users to
study the complex dynamics of ambient wireless traffic.

We present a detailed evaluation of a 26-node Argos net-
work deployed on streetlights and rooftops around a city,
demonstrating its ability to detect and classify wireless ac-
cess points and clients; monitor Web page usage; detect ma-
licious traffic; track the mobility of WiFi-equipped public
transport vehicles; and fingerprint individual users through
802.11 probe request packets.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless
communication; C.2.3 [Network Operations]: Network
monitoring

General Terms
Design, Experimentation, Measurement

Keywords

Wireless networks, 802.11, outdoor monitoring

1 Introduction

Wireless networks are becoming the de facto access net-
work for many Internet users, stemming from the tremen-
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dous growth in the use of laptops, smartphones, and other
mobile devices. Even many desktop systems come equipped
with 802.11 interfaces and can be used without a wired Eth-
ernet connection, and devices such as Apple’s Time Cap-
sule permit automated backup over a wireless connection.
As a result, the performance and behavior of wireless net-
works are critical for supporting the Internet. At the same
time, growth in wireless network deployments, especially in
densely populated urban settings, has been tremendous. A
city block might have hundreds of separate access points and
thousands of wireless clients. Of course, all of these devices
must share limited ISM spectrum, leading to potentially high
congestion.

Yet, we have little understanding of what wireless net-
work traffic looks like “in the wild” at urban scales, with
many access points and clients interacting. There are many
open questions that we would like to answer: What are the
characteristics of wireless network traffic? How does traffic
vary over space and time? Is there evidence of malware or
other malicious traffic traversing the airwaves? Can we char-
acterize user mobility patterns, and what can we learn about
individual clients?

In this paper, we propose Argos, a city-wide wireless
sensor network designed to study wireless network traffic
and dynamics over urban scales. Argos collects data from
multiple WiFi sniffers mounted on streetlights and rooftops
around a city, and performs decentralized trace merging and
filtering to support multiple user queries processing the cap-
tured traffic. Argos sensor nodes are themselves connected
with a backhaul wireless mesh network (in an orthogonal fre-
quency band) to enable scalability and large spatial coverage.
Using a network of 26 Argos nodes deployed around Cam-
bridge, MA, we present the first city-wide study of wireless
network traffic dynamics, comprising 2630 access points and
65,073 unique clients spanning an area of 9.7 km?.

Capturing and studying wireless network traffic across an
entire city raises many new challenges. The first is dealing
with the inherently lossy nature of wireless data capture in
this setting. Unlike dense indoor monitoring studies, where
99% or more of the traffic can be captured, in an outdoor
sniffer network the typical capture rates are on the order of
5-10%. This requires that sniffers merge their packet traces
to increase coverage, and new techniques to infer missing
data and recover useful information from an extremely lossy
data stream.



The second challenge deals with the vastly more complex
nature of traffic emanating from the multitude of APs and
clients in an urban setting, each operating on different chan-
nels with varying amounts of traffic. To maximize capture fi-
delity, multiple sensor nodes in a vicinity should coordinate
their channel changes to “track” interesting traffic patterns
and dynamically tune dwell times based on traffic volume.

The third challenge deals with scalability in terms of both
spatial coverage and the number of sniffers. It is not practical
to assume that sensor nodes have a wired back-channel to the
Internet; this would substantially increase cost and limit the
number of sites where sensors can be deployed. Rather, we
leverage mesh networking over a separate, 900 MHz radio
between sensor nodes, in a manner similar to conventional
wireless sensor networks. The limited capacity of the back-
haul mesh mandates that sensor nodes perform distributed
filtering and aggregation of their individual packet streams
to avoid overloading the mesh links.

This paper makes the following contributions. First, we
describe the architecture of Argos, the first sensor network
designed to capture and evaluate ambient wireless traffic at
an urban scale. Argos provides a rich programmatic inter-
face enabling multiple concurrent queries to capture and pro-
cess wireless traffic in different ways. Second, we describe
a novel in-network trace merging algorithm that substan-
tially reduces the amount of cross-traffic required to merge
captured packet traces across multiple sniffers. Third, we
present a detailed evaluation of Argos running across a city
through several case studies: tracking of popular Web sites
and Google searches from different parts of the city; detec-
tion of malicious traffic; tracking of public trains and buses;
and inferring clients’ past mobility patterns based on their
wireless network behavior. We demonstrate that, using these
techniques, Argos is effective at capturing and processing
data from a large number of clients and networks with (a)
minimal traffic load imposed on the backhaul network, and
(b) increased capture fidelity from coordinated channel hop-
ping and packet merging across sniffers.

We recognize that passive monitoring of wireless net-
works raises numerous privacy concerns. Indeed, Google
has recently found itself under fire for inadvertent packet
captures from their Street View cars [43]. Argos anonymizes
captured packet traces to protect against obvious user privacy
violations, but we recognize that this does not eliminate all
risks, and that reconciling the conflicting goals of data col-
lection and user privacy will be an ongoing effort.

2 Background and Motivation

The vast growth of wireless LANs has led to new chal-
lenges for characterizing traffic and user behavior, as well
as understanding the complex dynamics underlying the in-
teraction between multiple access points and clients. Up un-
til now, studies have focused on either microscopic analyses
of individual networks (say, in an office building [23, 34]),
wardriving studies that take a static snapshot of network
deployments [15, 27], or macroscopic analyses of isolated
mesh networks [12, 14]. The performance, behavior, and
variation of wireless networks “in the wild” has never been
studied at the urban scale.

This trend has created new difficulties for wireless net-
works. Increasing density can induce severe performance
problems when multiple users share the same limited radio
spectrum. Given the cooperative nature of 802.11 MAC pro-
tocols, it is possible for buggy implementations or malicious
users to hog the spectrum. Likewise, the shared nature of the
RF medium means that the efficiency of spectrum utilization
is areal concern. Malware that blasts a large number of pack-
ets or bandwidth-hogging file-sharing applications can cause
performance problems for many nearby users. New applica-
tions and mobile devices are putting increasing pressure on
wireless networks and leading to new user behaviors, such
as free-riding on open networks.

There is also a serious concern about privacy and secu-
rity of wireless LANs. The existing encryption standards,
such as WEP and WPA2 [28], have all been shown to have
weaknesses [26, 46], and it is possible to break WEP keys
in a matter of minutes [17]. Moreover, many networks are
unencrypted [19], so absent some form of end-to-end en-
cryption, user traffic travels over the airwaves in the clear.
Even in encrypted networks, it is possible to fingerprint in-
dividual wireless users based on leaked information, such as
802.11 probe requests [37]. A variety of end-user tools exist
to capture wireless traffic, break encryption keys, and per-
form spoofing, denial-of-service and other attacks [1, 5, 11].
One of the goals of this paper is to highlight the privacy risks
that arise with large-scale, coordinated traffic snooping.

2.1 Why Argos?

The goal of Argos is to enable urban-scale monitoring
of wireless networks, permitting multiple users to execute
queries against the captured traffic. To achieve high spa-
tial coverage, this requires multiple sensor nodes deployed
throughout a city that can capture ambient wireless network
traffic and perform filtering, aggregation, and trace merging
with other sensors. To protect the privacy of users, sensor
nodes should anonymize their raw traffic traces to remove
sensitive information. To ensure scalability, sensor nodes
should not require a wired back-channel, and preferentially
use a scalable wireless mesh to communicate with each other
and the Internet.

A wide range of potential users would find value in a
citywide wireless monitoring network. Wireless networking
researchers can conduct detailed studies of traffic dynamics
and network performance in a complex urban setting. Cap-
tured packet traces can be used to drive new protocol and
system designs rather than relying on synthetic traffic that
may not exhibit realistic behavior. Security researchers can
use Argos to understand privacy and security risks inherent
in wireless networks, such as the presence of malicious traf-
fic and privacy leakage through side-channels. Finally, re-
searchers in fields such as sociology and anthropology have
an increasing interest in understanding wireless network traf-
fic and user behaviors, such as characterizing the popularity
of online media sources or Web search patterns across differ-
ent parts of a city.

2.2 Challenges

There are many challenges associated with deploying a
city-wide wireless monitoring network. Firstly, individual



sniffer nodes often exhibit relatively poor packet capture
rates. In a sparse, outdoor deployment, it is unlikely that we
will be able to capture packets from a given source (client
or access point) with high fidelity. Although many Argos
queries focus only on high-level, aggregate observations of
wireless network activity, when “drilling down” into a par-
ticular source or packet stream is called for, we can improve
capture coverage by coordinating between multiple sniffer
nodes. For example, multiple sniffers in an area can syn-
chronize their channel hopping schedules to maximize the
joint probability of collecting packets from a given source.

Secondly, the system should scale up to many sniffers de-
ployed across a large urban area. It is unreasonable to ex-
pect every sniffer node to have a wired connection to the
Internet; this would substantially limit the locations at which
sniffers could be installed, and increase deployment cost and
management overhead. For this reason, Argos makes use
of wireless mesh networking to enable connectivity between
sniffers and the Internet. The mesh backhaul uses an orthog-
onal frequency band (900 MHz) to avoid interference with
the traffic sources being monitored. However, this gives rise
to a related challenge in that wireless mesh networks are typ-
ically very bandwidth-constrained, and the total amount of
traffic being captured by a set of sniffers may exceed the ca-
pacity of the mesh. In our deployment, the backhaul mesh
links range from a few Mbps to just a few hundred Kbps.
For this reason, it is generally not possible to send the raw
packet traces back to a central server for processing; as in
conventional sensor networks, filtering and aggregation must
be performed within the sniffer network itself.

Thirdly, there is substantial diversity in the ambient wire-
less traffic present throughout a city, ranging from home net-
works with a small amount of traffic to large, enterprise-wide
wireless LANs supporting thousands of users. The spatial
distribution of wireless LANSs is highly irregular and tempo-
ral diversity is seen across multiple timescales. In addition,
increasing diversity of the client device population, including
(mostly) static laptops to highly mobile smartphones, makes
it challenging to obtain a clear picture of traffic patterns.

2.3 Related Work

The standard approach to studying urban wireless net-
work deployment is wardriving, in which a mobile sniffer
is used to detect the presence and static properties of de-
ployed wireless LANs [15, 27]. Wardriving studies in nu-
merous cities have revealed an extremely high penetration
of wireless networks, and the online Wigle.net database re-
ports over 19 million unique wireless LANs [10]. However,
these studies do not typically include any analysis of wire-
less traffic itself since observations are made only over short
periods of time. A related measurement study [19] explored
the extent to which wireless clients in moving vehicles can
establish Internet connectivity via open access points.

Passive monitoring has been used for detailed measure-
ments of indoor wireless LANs. Jigsaw [23] is a system
for diagnosing MAC-layer behavior by capturing detailed
packet traces from a large number of densely-deployed wire-
less sniffers. The authors show that by capturing nearly-
complete traces of the wireless activity in a building, a num-
ber of analyses can be performed that are difficult to accom-

plish from a single vantage point. Jigsaw was deployed on
39 sensor pods across a single building. A contemporary sys-
tem, Wit [34], has similar goals to Jigsaw, but emphasizes
the use of a formal language for specifying 802.11 behav-
ior, which is then used to perform inference on the captured
packet traces. Wit was deployed on five sniffers to moni-
tor traffic during a conference. The Dartmouth MAP sys-
tem [42] is designed to detect malicious wireless network ac-
tivity, such as the presence of rogue access points. In order to
monitor all 11 of the 802.11 b/g channels, MAP employs in-
telligent channel-hopping schemes, some of which we make
use of and build upon in Argos. All of these systems rely on
a dense deployment of sniffers and perform a “microscopic”
observation of a single wireless network environment.

Passive monitoring has also been explored in low-power
wireless sensor networks (WSN), including SNIF [40] and
LiveNet [21]. These systems are useful for debugging and
diagnosing network performance anomalies but focus on a
single sensor network rather than many existing wireless
LANs. Our goal in this paper is to study the efficacy of
wireless monitoring on an urban scale, capturing traffic from
thousands of existing wireless LANS.

A number of studies of the performance and traffic char-
acteristics of urban-scale mesh networks have been pub-
lished. The RoofNet project has undertaken detailed studies
of link-layer and routing performance across a WiFi mesh of
38 nodes across a city [16, 14]. These studies focused on the
low-level network performance rather than ambient traffic.
A study of the Google WiFi mesh [12] in Mountain View,
CA explored the behavior of mesh network users, but did so
through capturing data at the wired gateways, and did not
look explicitly at the wireless network dynamics.

3 Argos Architecture

Argos utilizes a two-tier architecture consisting of multi-
ple sniffer nodes and a single central server. Sniffer nodes
are interconnected via a backhaul network, such as a wire-
less mesh, allowing sniffers to communicate with each other
as well as the central server. Sniffers capture wireless traffic
and perform local filtering and processing on the raw packet
streams. In addition, sniffers can perform in-network traffic
merging to merge their individual streams, increasing cap-
ture fidelity. Results from queries are delivered to the central
server where they are conveyed to the user. Figure 1 shows
the architecture of a single sniffer node; the remainder of this
section details each component.

3.1 User Queries

In Argos, wireless packet streams are processed by user
queries. Multiple concurrent queries can execute on the
Argos network at one time. Relatively few constraints are
placed on the structure of queries, allowing for a wide vari-
ety of applications. Simple examples include generation of
summary statistics over a sliding time window or filtering
packets according to header fields.

Each query consists of two dataflow graphs composed
of packet-processing operators: a sniffer dataflow, which is
replicated on each of the sniffer nodes, and a server dataflow
which is executed only on the central server. Each sniffer
dataflow instance receives input packets from the Argos node
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Figure 1. This figure shows a block diagram of how pack-
ets flow through a single Argos sniffer. Starting with
packet capture from the sniffer radio in the lower left,
packets are passed up the chain of processing elements.
At each step, a tap provides access to the packet stream
at that point for any interested user queries.

that it is running on via one or more faps, and sends results
(via the backhaul network) to the server dataflow. The server
dataflow may perform additional processing or aggregation
on the results received from the sniffers, as well as log the
output of the query and report the results to the user.

Each Argos sniffer provides five taps by which sniffer
dataflows can receive packets, based on what degree of pre-
liminary processing is desired. The raw tap provides packets
as soon as they are captured by the local interface. The ag-
gregated and merged taps provide packets after any duplicate
captures are aggregated and then merged from multiple snif-
fer nodes, as described below. The IP and TCP taps provide
defragmented IP datagrams and reconstructed TCP sessions,
respectively. Many queries make use of only a single tap, but
in some cases combinations of multiple taps are useful.

User queries are implemented using the Click software
router [31], which provides a rich set of interfaces for
network packet processing. A query’s sniffer and server
dataflows are written directly in the Click language. Each
query also specifies a small number of configuration and
performance-related parameters, including the list of net-
work taps that the sniffer dataflow uses. For each speci-
fied tap, the dataflow must have one input over which Argos
will pass the appropriate packets. Any packets output by the
dataflow are automatically transferred over the backhaul net-
work to the central server and passed as input to the query’s
server dataflow. This allows easy aggregation of results from
the entire sniffer network without having to deal with explicit
network connections between sniffers and the central server.

3.2 Sniffer Nodes

Argos sniffer nodes consist of single-board PCs coupled
with one or more 802.11 radios for packet capture. Our pro-
totype nodes, described further in Section 4, use a Wistron
CM9 802.11a/b/g radio with an 8 dBi omnidirectional an-
tenna for packet capture. Each node runs an instance of
the Argos sniffer process, which accepts raw captured pack-
ets from the operating system, performs in-network pro-
cessing (as described below), and emulates a TCP/IP net-
work stack (for IP defragmentation and TCP stream recon-
struction). Packet capture is performed using the standard

libpcap [9] interface provided by the OS. The wireless de-
vice driver prepends each captured packet with a radiotap
pseudo-header [8] which includes fields such as the received
signal strength and type of physical layer modulation used.

Anonymization: Argos sniffers support a range of data
anonymization mechanisms to prevent private information
from leaking into user queries. At present, use of these
mechanisms is optional, since we have not yet opened our
prototype up to external users. Argos implements widely-
accepted techniques for masking source and destination
MAC addresses and IP addresses through hashing [38]. In
addition, Argos can optionally drop arbitrary portions of a
captured packet including individual header fields and the
entire payload. Of course, the impact of these techniques de-
pends very much on the semantics of the query, and there is
no one-size-fits-all approach that will work for all queries.
We are currently investigating the use of a stronger differen-
tial privacy guarantee that will prevent Argos queries from
leaking information about specific users (§8).

Wireless mesh backhaul: Sniffers are interconnected via
a backhaul network that provides them with connectivity to
each other and the central server. Depending on the deploy-
ment scenario, a wide range of backhaul network options
are possible. Direct Ethernet connectivity to sniffers may
be possible in some situations, although the cost can become
prohibitive, especially for sniffers deployed on rooftops and
streetlights in a city, which is our focus. Cellular or WiMax
connections may also be possible, although they incur addi-
tional subscription costs and would not enable direct connec-
tivity between sniffers. Also, most current commercial offer-
ings have fairly limited uplink capacity (< 1 Mbps) [30, 47].

In Argos, we focus on the use of wireless mesh as a cost-
effective and scalable backhaul network solution. Wireless
mesh has been widely studied and deployed in a number of
research and commercial settings [2, 4, 13, 16]. Given the
reasonably close spatial proximity of most Argos sniffers,
mesh is a good choice for interconnectivity, and can be de-
ployed at low cost with no recurring fees. Mesh also allows
sniffer nodes to communicate directly with each other to en-
able cross-sniffer collaboration, such as in-network merging
of packet streams captured from multiple sniffers.

Of course, it is important that the wireless mesh back-
haul does not interfere with the ambient traffic being mon-
itored by Argos. In our prototype, the wireless mesh uses
a secondary radio operating in a different frequency band
(900 MHz) than the sniffer radio, to ensure that there is no
crosstalk. The mesh itself is also an 802.11 network but op-
erates in the non-standard frequency band, and provides up
to a few Mbps of throughput on each link.

3.3 In-network Traffic Processing

Given that an individual sniffer will only receive a partial
view of the traffic from a given source, merging the packet
streams from multiple sniffers can enable higher packet cov-
erage. Merging also removes duplicates, which is important
for the accuracy of some queries. Yeo et al. [48] were the
first to use this technique and it has since been used by other
wireless network monitors [23, 34]. In each of these systems,
every sniffer sends its raw packet stream to a central server
for merging, which is only viable for indoor environments



with ample backhaul network capacity. However, such a cen-
tralized approach is unsuitable for large-scale outdoor snif-
fer networks with constrained backhaul network capacity.
Even with compression, the volume of captured traffic can
overload the backhaul network, leading to substantial packet
loss. Likewise, the centralized approach does not scale as the
number of sniffers and network diameter increase.

To address this problem, we develop an approach to in-
network traffic processing that attempts to balance the traffic
load on each backhaul network link to minimize saturation
and packet loss. The idea is to logically partition the global
packet stream so that each sniffer node is responsible for
some disjoint fraction of the stream. Sniffers forward each
captured packet to its designated aggregator node, which (a)
merges the partial streams in receives, and (b) processes the
merged packets by executing the user queries.

Formally, we define the partitioning function p: § = N
where S is the set of traffic sources (i.e., a wireless client or
access point being monitored) and N is the set of aggregator
nodes. Each sniffer capturing packets from a source s € §
applies the partitioning function p(s) to determine the ag-
gregator a € N that should receive packets sent by s. Each
aggregator merges the packets that it receives, before passing
them to a locally-running instance of each user query. This
approach is inspired by the MapReduce paradigm used for
large-scale distributed processing in datacenters [24].

Traffic partitioning: Argos must take into account the
cost of transferring each packet from the capturing node to
the aggregator node. In a wireless mesh environment, it
is desirable to avoid sending captured packets over multi-
ple network hops, as this increases overall network load.
Also, the choice of partitioning method will determine the
set of packets that are observed by each aggregator node
after merging. This affects user queries, since each snif-
fer dataflow will only be able to observe its locally-merged
portion of the global packet stream. Ideally, the partitioning
method should not restrict the query logic.

Our approach to traffic partitioning is based on assign-
ing all traffic captured for a given basic service set (BSS) to
a single aggregator node. The BSS represents a single ac-
cess point and all of its associated clients. The set of sniffer
nodes that capture traffic from a given BSS tend to be within
close physical proximity to each other, so this choice of par-
titioning function should minimize backhaul traffic. Also,
many queries naturally wish to observe properties of individ-
ual clients or access points, so partitioning according to BSS
allows queries running on each aggregator node to observe
the full merged packet stream from each source.

To implement this approach, each sniffer maintains a table
mapping each BSSID its aggregator node. For each packet
captured, the sniffer looks up the appropriate aggregator and
forwards the packet. In cases where an aggregator has not
yet been assigned, this table is constructed as follows. Each
sniffer maintains a count of the number of packets captured
from each BSSID. These counts are periodically reported to
the central server. The central server assigns aggregation du-
ties to the node with the largest number of received packets
for each BSSID. This approach ensures that the fewest num-
ber of packets will need to be sent from other sniffer nodes

to the aggregator, since the aggregator has already captured
the largest number of packets for this BSS.

Although most 802.11 frames specify a BSSID, this is
not the case for control frames (e.g. ACK and RTS frames),
which only specify their destination. To properly associate
these packets with their BSSID, sniffers maintain a cache of
MAC address to BSSID mappings, which is updated when-
ever a non-control frame is captured. The BSSID can then be
determined for a control frame by consulting the cache. In
addition, we need a special case for frames sent to the broad-
cast address. Instead of attempting to aggregate and merge
these frames, we simply pass all broadcast frames through
for local processing by the capturing sniffer.

Stream merging: On each aggregator node, stream
merging is performed in a manner similar to Jigsaw [23].
Received packets’ timestamps are adjusted to account for
clock skew differences between sniffers. As suggested by
Yeo et al. [48], we use beacon frames to update the cur-
rent timeskew estimates between sniffers; unlike other wire-
less frames, beacons provide unambiguous synchronization
points by virtue of their 64-bit timestamp field, which en-
sures that every beacon is unique. Next, the packet stream
is merged by buffering packets for a window of time and
searching for duplicate packets (from different sniffers) with
similar timestamps; these are assumed to be copies of the
same original packet transmission and are merged into a sin-
gle packet. When a packet is output by the merger, it is anno-
tated with a list of all of the sniffers that captured the original
transmission, along with each sniffer’s local capture time and
received signal strength. This information is important for a
variety of spatially-aware queries as we will discuss below.

In conventional approaches to in-network aggregation,
nodes route sensor values up a collection tree to the root,
merging values at each hop along the way. In comparison,
Argos merges packets only once (at an aggregator node).
This leads to two efficiency improvements: first, routing a
packet to its aggregator node is generally cheaper than rout-
ing it all the way to the root; second, execution of user
queries can occur in-network on aggregator nodes instead of
only at the root. Conventional approaches generally cannot
push queries into the network because merging of values can
happen at every node and thus the final value is not obtained
until the root is reached. In Argos, however, a packet is “fi-
nal” after its one and only merge (on its aggregator node) and
thus we can immediately apply user queries.

Channel identification: After performing traffic merg-
ing, it is necessary to determine the original 802.11 transmis-
sion channel of each packet. When packets are first captured,
Argos annotates them with the current channel of the captur-
ing interface. However, this is not necessarily the correct
channel, since 802.11 channels overlap and packets trans-
mitted on one channel can be received on nearby channels.
For example, in one 10-minute packet trace from an outdoor
sniffer tuned to channel 2, over 75% of the received pack-
ets were actually transmitted on channel 1 (a much busier
channel, leading to frequent packet bleed-over).

To handle this situation, each sniffer node maintains a
cache of which channel each AP is operating on, which is
announced in the AP’s beacon frames. This information is



used to determine the transmission channel for most captured
packets. In cases where packets are captured from a BSSID
for which no beacons have yet been received, we fall back to
using the capturing interface’s channel as a guess.

3.4 Protocol Stack Emulation

Merged traces are subject to protocol stack emulation, al-
lowing for higher-level analysis of the network traffic by user
queries: IP fragments are reassembled and TCP flows are re-
constructed. Due to sniffers’ limited capture abilities, many
TCP flows are expected to be only partially reconstructed,
leaving “holes” in the stream where one or more TCP packets
were missed. Rather than rejecting these flows, we annotate
each with a listing of which sequence-number ranges were
and were not captured. We use timeouts to determine when
to “close” and output each TCP flow, as there is no guarantee
of capturing the FIN packet to mark its completion.

We expect that many classes of queries will be able to
make good use of partially-reconstructed TCP flows. For ex-
ample, any query examining application-level headers (e.g.
HTTP requests or peer-to-peer traffic) may need to capture
only the first 1-2 packets in a TCP stream. Rule-based intru-
sion detection systems, such as Snort [41], can detect many
attacks with only a small number of captured bytes if they
happen to line up with the appropriate attack signature.

3.5 Sniffer Channel Management

A unique challenge in Argos is that of simultaneously
monitoring multiple radio channels. There are 14 total
802.11b/g channels (of which 11 are permitted for use in the
US). One approach is to equip each sniffer node with multi-
ple radios. Previous indoor WiFi monitoring systems, such
as Jigsaw [23], used 3 radios on each sniffer node tuned to
the most common 802.11 channels (1, 6, and 11); however,
in a large, urban-scale setting we expect to see a substan-
tial amount of traffic on nonstandard channels. For example,
we estimate (by observing captured beacons) that 20% of the
APs located in the vicinity of our current sniffer deployment
utilize channels other than 1, 6 and 11. Clearly, if we want
to include all nearby wireless networks in our monitoring, it
would be prohibitive to equip sniffers with as many radios as
there are available channels.

Our approach is to perform intelligent channel hopping
on the sniffers to maximize packet capture coverage for user
queries. The simplest approach would entail a simple static
schedule with fixed dwell times, although this is unlikely to
achieve the best results given the variations in channel oc-
cupancy. A better approach is to dynamically weight dwell
times based on channel occupancy [25]. Since query require-
ments may vary, Argos does not stipulate any single channel
hopping policy, but instead provides mechanisms for queries
to specify their own policy.

Given that traffic of interest to a user query may be picked
up by multiple sniffers, it is also desirable to coordinate
channel hopping across nearby sniffers in order to maximize
capture rates. Argos provides a channel focusing mecha-
nism, whereby a sniffer can request that other nearby snif-
fers switch to a given channel so as to improve the over-
all chances of picking up interesting traffic. For example,
a query running on a given sniffer may detect traffic of in-
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terest (say, TCP packets destined for a certain IP address)
and instruct other nearby sniffers to switch to the same chan-
nel to improve capture fidelity for the remainder of the traffic
stream. Currently we define sniffer “nearness” as geographic
distance, although other options exist, such as the degree of
overlap in captured traffic.

With multiple concurrent user queries, each query may
wish to listen on a different channel at the same time. In Ar-
gos, we address this through the use of channel leases and
prioritization. A query can request that the sniffer radio be
changed to a given channel ¢ for duration d with priority p.
The channel manager will grant the lease to the query with
the highest priority. If the priority of the request is greater
than the priority of the current lease, the current lease will be
preempted. When the current lease expires, pending lease re-
quests are processed in decreasing priority order. Often, each
query is assigned a static priority at configuration time (e.g.
according to user ID), although many policies are possible.

As an example, the default weighted channel policy will
iterate through the available channels according to an esti-
mate of the amount of traffic being captured on each channel.
A query can temporarily override this default policy by re-
questing a coordinated channel focusing across a set of snif-
fers, by making a lease request as described above. Once the
lease expires, the sniffer will return to the default policy.

3.6 Example Query: Stolen Laptop Finder
An example Argos query is illustrated in Figure 2, which
implements a simple stolen laptop finder. The query main-
tains a list of target MAC addresses representing stolen lap-
tops that should be tracked (e.g., after being reported stolen
by the owner). On each sniffer, locally captured packets are
passed (via the raw tap) to a WeightedChannelRotate ele-
ment that periodically adjusts the channel-hopping schedule
according to the number of packets observed on each chan-
nel. Packets are also passed to a MACFilter element that
drops all packets whose source MAC address is not in the
list of targets. Matching packets are passed on to trigger
the GeoChannelFocus element, which recruits nearby snif-
fers to switch to the same channel. This will increase the
network’s overall ability to recover packets from the stolen
laptop (which may aid in identifying its location or current
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Figure 3. Map of the Argos sniffer deployment in Can;-
bridge, MA. The area shown is just under 7x5 km.

Figure 4. Argos sensor node deployed on a street lamp.
The thick antenna pointed down on the right is for the
900MHz backhaul radio, and the thinner antenna on the
left for the 802.11 sniffer. The node is powered from the
streetlight.

user). The WeightedChannelRotate element uses a low prior-
ity when obtaining leases for channel-hopping. This ensures
that the GeoChannelFocus element, using a higher priority,
can to suppress channel-hopping when a laptop is detected.

After in-network merging, the merged packet stream is
passed to each query via the merged tap, where a second
filtering for target MAC addresses is performed. Any match-
ing packets are passed to an EstimateLocation element that
uses each merged packet’s annotation of which sniffers cap-
tured that packet and the associated received signal strength
to estimate the transmitting laptop’s location. Finally, lists
of detected laptops and estimated locations are pushed to the
central server, which alerts the end user.

4 Implementation and Deployment

We have implemented and deployed a complete prototype
of the Argos system. The deployment consists of 26 nodes
mounted on streetlights and rooftops around Cambridge and
Somerville, MA, in four (disconnected) mesh clusters to-
gether spanning over 9.7 km? (see Figure 3). Each sniffer

node consists of either a Soekris net4826 (233 MHz CPU,
128 MB of RAM) or ALIX 2c2 (500 MHz CPU, 256 MB of
RAM) single-board computer, housed in a NEMA 6x-rated
weatherproof enclosure. Both configurations use a Wistron
CM9 802.11a/b/g mini-PCI radio with an 8 dBi omnidirec-
tional antenna as the sniffing device, and a Ubiquiti XR9
900MHz mini-PCI radio with a 6 dBi omnidirectional an-
tenna for backhaul connectivity via wireless mesh. This is
a high-power radio designed for long-range operation, with
a peak transmission power of 28 dBm. The XRO uses the
802.11 MAC and PHY, albeit in a nonstandard frequency
band, with PHY rates up to 54 Mbps, although in practice we
observe typical link-level TCP throughputs from 2-16 Mbps.
OLSR-NG [6] is used as the backhaul mesh routing proto-
col. Five of the nodes also have Ethernet connectivity and
function as wired sinks. Figure 4 shows one of our snif-
fer nodes deployed on a streetlight. Note that Argos sensor
nodes are continuously powered, which is easy to do on most
rooftop and streetlight installations. We are currently design-
ing a solar-powered Argos node for deployment in locations
where AC power is not available.

It is important to note that the nodes in our deployment
were not located to maximize packet capture. Instead, the sit-
ing of sniffers was dominated by physical and logistical fac-
tors; where we are allowed access, there are suitable mount-
ing areas, and electric power is available). Hence, the ge-
ographic distribution of the sniffers is nonuniform and not
intended to be ideal for ambient wireless monitoring.

As noted previously, Argos is implemented using
Click [31]. In addition to reusing a number of existing Click
elements, we implemented a total of 46 new elements, which
perform operations such as packet partitioning (by BSSID),
packet-stream merging, and channel hopping control. We
also make use of the QuickLZ [7] compression library for
compressing network traffic.

5 Performance Evaluation

In this section, we evaluate the performance of Argos’
approaches to in-network traffic processing and coordinated
channel focusing. For traffic processing, the primary met-
ric we are concerned with is the amount of backhaul band-
width required to send packet traces between sniffer nodes.
We demonstrate that Argos’ dynamic aggregator assignment
substantially reduces the bandwidth requirements compared
to sending all traffic to the central server for merging.

For coordinated channel focusing, the goal is to improve
the sniffer network’s ability to detect packet streams of in-
terest by focusing multiple sniffer nodes on the same chan-
nel once a sniffer detects the target. We show that Argos’
triggered channel focusing improves capture of event traffic
compared to simpler channel hopping approaches.

5.1 In-network traffic processing

First, we consider the impact of Argos’ approach to in-
network traffic processing on backhaul bandwidth usage.
The benefits depend on several factors, including the volume
of traffic being captured, the backhaul network topology, and
the backhaul capacity. Given that our deployment of Argos
represents a single point in a large parameter space, to study
these effects we make use of a simplified analytical model



Class Frequency | Offered Traffic Load
APs 18% 5514 Bytes/sec
Active Clients 14.5% 287 Bytes/sec
Idle Clients 65% 49 Bytes/sec
Ad-hoc Stations 2.5% 931 Bytes/sec

Table 1. Model for distribution and traffic load of trans-
mitters, based on live deployment data.

1-0r! P S e S
L= : :
0.8FH}------ t ----- R S .

[ . . .

L : : :
u_O-GH""‘"'Z': """" oo oo 7]
a rog | |

U R SR R

o2H....ii..... L] =in-network ||

' R ; = centralized
R - ' random

O. [ [

0
0.0 0.1 0.2 0.3 0.4 0.5
Link Traffic (Mbps)

Figure 5. Distribution of traffic load on backhaul net-
work links with centralized and in-network traffic pro-
cessing, using 25 sniffers and 4000 transmitters, resulting
in a total offered load of 34 Mbps.

that allows us to vary each parameter separately.

The model is based on a square grid of 25 sniffers, with
each sniffer having direct mesh backhaul links to the four ad-
jacent sniffers. The central server is placed in the center of
the grid. There are 4000 traffic sources uniformly randomly
distributed throughout the space; each source is randomly
chosen from the four classes in Table 1, based on observa-
tions from the real Argos deployment described in Section 6.
Each source i generates CBR traffic according to the rate
shown in the table, denoted r;. A sniffer s captures a fraction
of the traffic from each source i according to the function
Fy(i) = dist(i,s)”%, where dist is the distance from the
source to the sniffer. We chose a pathloss exponent of o0 = 3
which is a good estimate for urban settings [39]. Hence, the
total volume of traffic captured by s is }; F;(i) - r;.

Though intended to be general, this setup is based on pa-
rameters from our live deployment (§6), including the num-
ber of sniffers (25), the average number of traffic sources typ-
ically detected during the day (4000), and the offered traffic
that we infer per transmitter (table 1). The constant factors
of the packet capture function were scaled such that the av-
erage capture rate was 8%, to match capture performance
inferred from our deployment. Some aspects of this model
are undoubtedly unique to our deployment, although prior
campus-based studies have reported comparable values for
client and AP traffic rates [32], as well as for the ratio of the
number of active clients to active APs [32, 45].

Given the capture rates for each sniffer, we can calcu-
late the backhaul network load that arises with (a) a central-
ized policy in which each sniffer transfers all of its captured

traffic directly to the sink, (b) a randomized assignment of
traffic streams to aggregator nodes; or (c) Argos’ in-network
processing. In each case, we calculate the load imposed on
each link of the backhaul network. Traffic is compressed by
each sniffer prior to transmission, using an experimentally-
determined compression ratio of 65%. For the centralized
policy, we calculate a shortest path from each sniffer to the
sink. The total load on each backhaul link is just the sum of
the load induced by each sniffer whose traffic traverses that
link. For the two in-network processing cases ((b) and (c)),
aggregator nodes reduce the traffic stream by a percentage
and transmit the remainder to the central sink node.

The amount by which in-network processing reduces a
traffic stream depends on two independent factors. First is
packet merging, which reduces traffic at a rate proportional
to the frequency of duplicates in the captured stream. This
depends on the sniffer network’s density and the channel se-
lection pattern (since nearby sniffers can only capture dupli-
cate packets if they are tuned to the same channel). In our
network we see an average merge rate of only 7%.

Secondly, in-network processing also reduces traffic
streams by executing the user queries. The queries’ summed
output data rate depends on the number and types of the
queries, but in our case the 10 queries that performed all of
the logging and data collection for sections 6 and 7 resulted
in a 90% data reduction (this includes the 7% reduction just
from packet merging). In other words, the combined out-
put of this set of queries was one-tenth the data capture rate.
From this, we assume in our model that in-network process-
ing results in a 90% data reduction on each aggregator node.

Figure 5 shows the distribution of load on backhaul links
for each policy. In this case, the total offered load from the
traffic sources is 34 Mbps. As the figure shows, the cen-
tralized approach induces a wide variation of traffic loads
on each backhaul link, since the links closest to the sink
must carry much more traffic than nodes near the leaves. In-
network processing spreads the load more evenly across the
mesh, with a max link usage of 0.06 Mbps, 8 times less than
with the centralized policy. The randomized scheme only
partially realizes the benefits of in-network processing, re-
sulting in a max link usage of 0.19 Mbps, and incurs the
highest mean and median link usages (0.1 Mbps each). Fig-
ure 6 shows how the max link usage varies as the total offered
load from traffic sources increases.

5.2 Coordinated channel focusing

Next we evaluate our technique of channel focusing in or-
der to allow multiple sniffers to capture traffic from a given
source. The objective is to capture as many packets as pos-
sible from an “event of interest,” such as an anomalous traf-
fic pattern or transmissions from a specific wireless client.
Since an interesting event can occur on any 802.11 channel
at any time, an uncoordinated approach to channel hopping
is unlikely to capture many packets from an event. In the
channel focusing strategy, if any one of the sniffers detects a
packet representing an interesting event, it recruits the 3 (ge-
ographically) nearest sniffers to switch to the same channel
and begin capturing packets. Our metric is the number of
packets captured for each event.

In order to have a fair comparison, an ideal experiment
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Figure 6. Scalability of in-network processing with in-
creasing load. The number of sniffers was fixed at 25
while the number of transmitters was scaled up. For
context, 2.5 Mbps is a (generous) estimate for current
wireless mesh capacity limits; we expect that sniffer net-
works with any links loaded beyond this amount will suf-
fer from network congestion.

should use the same source traffic for each channel hopping
policy. However, given that each sniffer can only listen to
a single channel at a time, we have to emulate this setting
with a packet trace captured offline. We captured a set of
5-minute packet traces from 9 nearby sniffers in our Argos
deployment. There are 11 traces in total, one for each 802.11
channel. For the experiments, sniffer nodes read from the
traces instead of capturing packets from the radio. We em-
ulate a situation where a sniffer can “change channels” by
reading data from the appropriate trace; that is, the traces vir-
tually overlap in time, although they were initially captured
at different times.

We randomly chose 5 “interesting events” within the cap-
tured traces. Each event is defined as a packet chosen at
random followed by all packets transmitted from the same
station over the next 10 seconds. Each event is comprised of
at least 100 packets. The performance metric is the fraction
of “interesting event” packets that are successfully captured,
in aggregate, by the entire sniffer network.

We evaluate three different channel hopping schemes.
Rotation Only uses weighted channel hopping in which each
sniffer independently rotates through channels with dwell
times proportional to the amount of traffic observed on each
channel. Detect and Hold causes a sniffer to remain on the
same radio channel for 10 sec after detecting a single packet
from an interesting event, thereby increasing its chance of
picking up more packets from the event. Finally, Chan-
nel Focusing has the first node that detects an event recruit
nearby sniffers to switch to the same channel for 10 sec.

Figure 7 shows the fraction of packets captured for each
of the 5 events (labeled A—E) for each of the three policies.
In each case, channel focusing greatly improves the capture
fidelity compared to the Rotation Only policy. Indeed, a sin-
gle sniffer holding on the same channel (Detect and Hold)
results in a substantial improvement to event capture, with

Il channel focusing

[ detect and hold
Il rotation only

—
o

Percent Captured

© o o o ©°o
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Figure 7. Event detection capture rates with and without
channel focusing.

improvements ranging from 41% to 77%. Channel focusing
with neighbor recruitment further improves capture rates up
to 34% above the Detect and Hold policy. This shows that
there is clear benefit from coordination across sniffer nodes.

6 Urban Wireless Traffic Characterization

In this section, we leverage the Argos deployment to per-
form a detailed characterization of wireless network usage
across the city. Unlike previous wardriving studies [15, 27],
we have the benefit of continuously monitoring wireless traf-
fic from multiple vantage points, rather than taking a single
snapshot view of wireless traffic from a single mobile sen-
sor. This yields a much richer picture of the urban wireless
landscape than previous studies have revealed.

6.1 Overall network population

We conducted a number of different measurement stud-
ies on Argos that spanned a total of 6 months. This section
presents data from a 12 day period over which detailed traf-
fic measurements were recorded. In total, we detected 2630
access points and 65,073 wireless clients, although our rate
of capture varied widely across this population. By way of
comparison, these counts are each over 25 times larger than
those reported for a 24-hour trace taken by the largest indoor
wireless sniffer deployment [23]. A usage study of Google’s
500+ node outdoor mesh network [12] recorded 30k clients
over a 28 day trace, but this includes only the mesh traffic,
as opposed to all nearby wireless networks.

Overall, we captured a total of 1.1 TB of traffic across
2.4 billion packets. It turns out that a single wireless client
in the vicinity was responsible for 81% of all the captured
bytes and 30% of all captured packets; this “spammer” node
appears to be continuously transmitting max-sized 802.11
frames. Unfortunately these frames are encrypted so there
is not much we can say about them — this traffic is excluded
from the remaining analyses in this paper. The amount of
non-spammer traffic captured per sniffer varied greatly, from
just 3 MB to nearly 23 GB, with an average and median of
8.5 GB and 9.6 GB, respectively. This variance is not sur-
prising, due to differences in the sniffers’ locations as well
as the densities and activity levels of nearby wireless net-
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Figure 8. Spatial coverage of the Argos sniffer network,
in terms of the fraction of packets captured from a mo-
bile laptop in each location. Sniffers are shown as blue

markers.

works. Overall, 61% of the packets and 44% of the networks
utilized some form of encryption.

6.2 Spatial coverage

The first major question is, how much spatial coverage is
afforded by the Argos sniffer network? That is, over what
physical area can the sniffers observe ambient wireless traf-
fic? We conducted an experiment in which a user with a
laptop roamed around the Harvard University portion of our
deployment area. This area includes a number of multi-story
buildings as well as several open areas, typical of a univer-
sity campus. The laptop was equipped with a GPS receiver
and continuously broadcasted UDP datagrams containing the
current GPS coordinates. The sniffers observed this traffic
and, for each position of the laptop, we determined the frac-
tion of packets captured by Argos.

Figure 8 shows the results; the (extremely noisy) packet
reception rates from all 7 sniffers are combined and the data
is smoothed to yield a clearer picture of the spatial coverage.
The figure shows that although our capture ability is related
to distance (as expected), it’s a very rough correlation. On
the one hand we were able to capture packets from a lap-
top up to 430 m from the nearest sniffer, which is surprising
given the presence of several tall buildings obstructing the
line-of-sight path between the laptop and sniffers. On the
other hand, there are also areas quite close to multiple snif-
fers that had low packet capture rates.
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Figure 9. Capture fidelity as fraction of beacons captured
by each sniffer.

6.3 Traffic capture coverage

The second question is, how much of the total ambient
traffic was Argos able to detect? This is a difficult question
to answer, as we do not have ground truth as to how much
ambient traffic there actually is. As an estimate, we com-
pute packet reception coverage for each sniffer by counting
802.11 beacons received from access points. Access points
broadcast beacons at a fixed interval (typically 10 Hz), so
it is straightforward to calculate the percent of beacons cap-
tured from only the total number of beacons captured and the
elapsed time. As noted by others [29], beacon capture rates
can be used as a rough proxy for overall packet capture rates,
although their capture rates tend to be somewhat higher than
other traffic as they are transmitted at low PHY rates.

As shown in Figure 9, sniffer coverages range from 18%
to just under 1%; the overall coverage of the entire network
was 8%. These values are much lower than what is typically
seen with indoor monitoring networks, where coverage can
exceed 95% [23]. We discuss the implications of this (and
possible ways to improvement traffic capture) later in this
section. Also note that this figure omits APs for which we
captured only a small number of beacons (< 10) as fidelity
estimates in these cases are likely to be inaccurate; 21% of
detected APs fell into this category.

The next question we can ask relates to the variation in
traffic over time. Figure 10 shows the types of TCP traf-
fic (classified by port number) captured over a representative
weekday. Unsurprisingly, HTTP and HTTPS are the dom-
inant traffic classes, with Email (POP3, IMAP), FTP and
NetBIOS (not shown) making up most of the identifiable re-
mainder. Although the expected diurnal patterns are clearly
present, the captured traffic was quite bursty with hourly per-
class traffic spikes up to 147 MB. Each of the two promi-
nent HTTPS traffic spikes represents traffic from a single AP.
However, in both cases multiple clients were associated with
the AP so we could not unambiguously determine which spe-
cific client was the source.

Similarly, the two HTTP traffic spikes at 1:00am on days
1 and 3 were each traced to a single AP. Since the traffic
events occurred in the middle of the night, only 2-3 clients
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Figure 10. TCP traffic, by class, over 3 consecutive week-
days.

were observed associated with the AP. One client in par-
ticular is the likely source for both of the traffic spikes;
this client was associated throughout both events, during
which we observed the client make hundreds of web re-
quests. Many of these requests were to video-hosting sites
(e.g. youtube.com, netflix.com) further explaining the
sudden traffic usage.

6.4 Discussion

From these measurements, it is clear that Argos’ ability
to monitor large populations over significant geographic ar-
eas comes at the cost of missing a significant percentage
of the ambient traffic. Although this somewhat constrains
the applications suitable for Argos, our current performance
turns out be adequate to perform many interesting analyses
(§7). Nonetheless, its useful to briefly consider two sources
of packet loss that we have identified, with an eye towards
future system improvements.

Firstly, one must consider the urban environment, with
its frequent line-of-sight path obstructions by nearby build-
ings, plus the extremely dense penetration of extant WiFi
networks. Although these difficulties are largely innate to
urban settings, we expect that one could reduce their impact
as our sniffers were not optimally located for packet capture
and simply use 8 dBi omnidirectional antennas, rather than
dish or patch antennas that would have aided packet capture.

We also note that Argos’ long-range packet capture may
be biased towards packets sent at low PHY rates, as these
packets can be received at lower signal strengths than those
sent at higher PHY rates. Since we have no way to know
the true distribution of PHY rates used in our measurement
area, we instead utilize packet traces captured in other set-
tings as an imperfect comparison. We examined the distri-
bution of PHY rates present in packet traces from a confer-
ence in 2006 [20] and an academic building in 2007 [22]. In
both cases, the sniffers were densely deployed and thus cap-
tured nearly 100% of the traffic, yielding a complete picture
of the PHY rates in use. The indoor traces show 20% and
6% (respectively) of packets were sent at 36 Mbps or above,
whereas this is true for only 0.5% of the packets captured by

Rank  Requests  Clients  Site

1 1856 301 www.facebook.com

2 736 239 www.google.com

3 267 5 www.huffingtonpost.com
4 249 5 www.craigslist.org

5 239 1 www.repubblica.it

6 232 143 www.apple.com

7 162 22 images.apple.com

8 139 17 my.lesley.edu

9 133 46 www.youtube.com

10 131 7 www.seas.harvard.edu

Table 2. Top ten websites visited by users, ranked by
number of captured requests.

Argos. We tentatively conclude from this that Argos is in-
deed biased against high data rate packets. At PHY rates of
24 Mbps and below, there was no clear trend.

Secondly, many packet transmissions are missed simply
because all nearby sniffers are tuned to other channels at the
time. The above measure of fidelity estimates Argos’ cap-
ture rate across all traffic, but this is not optimal for many
queries. If a query is interested in a subset of the traffic, the
rate of capture of just that traffic can be increased if the query
can predict on which channels the traffic is most likely to oc-
cur. For example, our queries use the default channel policy,
which weights channels by the total traffic volume on each,
whereas a query interested only in TCP traffic might instead
weight channels by just the 802.11 data traffic. This would
deprioritize channels with lots of 802.11 management traffic
(e.g. beacons) but little higher layer traffic.

We tested a simplistic scenario with a query interested
solely in traffic from channel 1, which lead to a network-
wide fidelity of 25%. This is a significant improvement over
the 8% reported earlier, although this is somewhat of a best-
case scenario because the channel prediction was trivial (all
nodes statically assigned to channel 1) — we predict that most
queries can realistically expect a fidelity somewhere between
8% and 25%, depending on the pattern of traffic they are in-
terested in and how accurately one can predict when and on
which channels the traffic will occur. Developing channel
policies to that can forecast different classes of traffic is a
challenging area of future work.

7 Case Studies

In this section, we showcase Argos’ capabilities for en-
abling complex user queries against the rich data stream of
ambient wireless traffic. We present four case studies to
highlight potential use cases for Argos: tracking of popu-
lar Web sites and Google searches from different parts of
the city; detection of malicious traffic and malware over the
airwaves; tracking of public transport services; and finger-
printing individual clients based on their wireless network
behavior. These case studies are intended to demonstrate Ar-
gos’ capabilities to distill complex wireless network traffic
to yield a high-level view.

7.1 Popular Websites and search patterns

The first case study deals with exploring the popularity of
Web sites visited by wireless users around the city. Deter-
mining which website a user is visiting is non-trivial: simply
looking at packets destined for port 80 reveals IP addresses,
but many of these are for auxiliary servers (such as ad sites



Count | Snort Rule
1229 SQL ping attempt
794 x86 shell code exploit

204 SQL probe response overflow attempt
121 Web server buffer overrun attempt
87 FTP traffic encrypted

Table 3. Top five Snort alerts.

and CDN servers) that are not being directly visited by the
user. We implemented a query that captures the HTTP re-
quest headers from users and looks for a Host: field in the
request, which most browsers add to indicate which host is
being visited. We also look for HTTP responses where a
Set-Cookie header is used. Using this technique, we cap-
tured a total of 523,818 HTTP requests, for which we could
determine the site name for 62,292 of them. 6143 unique
websites were visited, and Table 2 shows the top 10 after we
exclude ad sites and CDN servers.

We captured Web search queries by looking for HTTP re-
quests to URLs containing appropriate strings (e.g., Google
searches include &g= followed by the query phrase). We cap-
tured 1,725 web searches, 686 of which were to Google.
The most popular search terms are not particularly surpris-
ing, dominated by words such as in, of, and boston.

7.2 Malicious traffic

Most studies of malware on the Internet [36, 33] are based
on traces captured from wired networks or border routers.
One notable exception is Stone-Gross et al.’s study of user
traffic at a conference [44]; the authors demonstrate that
identifying malware through wireless sniffing is possible, al-
though they also utilized packet traces taken from the wired
network. Additionally, they estimated a capture fidelity of
more than 90% owing to their compact, indoor setting.

We are interested in whether Argos can detect malicious
behavior over the airwaves. We set up an Argos query to
feed merged traces to the Snort [41] network intrusion de-
tection system, configured with a standard set of 5303 de-
tection rules. We added two additional rules [3] to detect
traffic from the Conficker botnet. Over 11 days, Snort raised
2979 alerts across 37 rules; 141 unique client devices were
implicated by the alerts. Table 3 shows the top 5 triggered
alerts. The Conficker shellcode botnet rules triggered 5 times
on one client, which was subsequently observed engaging in
what appeared to be typical scanning behavior, attempting to
connect to TCP ports 80 and 445 across a large number of
geographically-dispersed IP addresses.

Note that Snort, designed primarily for wired networks,
assumes that it can observe complete packet traces — given
the limited fidelity of wireless packet capture in Argos, it is
promising that a wide range of malicious activity could still
be detected. These results demonstrate that there is substan-
tial promise for the use of passive monitoring for detecting
and tracking malicious behavior in urban scale settings.

7.3 Tracking public transport services

Another interesting use for Argos involves detecting
and tracking public transport vehicles and their passen-
gers. Soon after deploying Argos, we noticed the occa-
sional appearance of SSIDs such as Coach0228_Box-078
and MBTA_WiFi_Coachl601_Box-139. A bit of research,

and the observation that these SSIDs were only ever cap-
tured by the sniffers in the western Cambridge cluster near a
commuter rail line, lead us to the realization that these were
access points installed on public commuter trains.

To test the sniffers’ ability to track moving vehicles, we
wrote a query to detect the passage of trains and infer their
direction of travel. Sniffers perform weighted channel hop-
ping to search for packets from any known train BSSIDs;
when a train packet is detected, channel focusing is initiated
to maximize the network’s capture potential while the train
passes. To infer the direction of travel, we rank-order the
3 sniffers located alongside the railway tracks according to
the mean timestamp of the packets captured at each.

Table 4 shows one typical day’s worth of data. Argos
captured 2801 packets from 42 unique access points, corre-
sponding to 2—4 APs per train. Trains were detected passing
by on 34 occasions, with directionality inferred in 29 of the
cases (4 of which were incorrect). In total, we have observed
456 unique users associated with the train networks and have
captured 804 Web requests from passing trains.

We have also detected WiFi networks re-
lated to buses in the area, with names such as
boston_bus_600-798, Dartmouth Coach 0801, and
Concord Coach 921 Left Side. 47 bus-mounted net-
works have been discovered by the Argos node that is
mounted near Interstate 93, a major highway leading into
and out of Boston. We have detected 144 unique users and
176 web requests on these networks.

7.4 Wireless client fingerprinting

Our final case study asks the question: how much infor-
mation can we infer about individual users based on their
wireless network traffic? Clearly, a great deal can be learned
by watching an individual user’s Web surfing or email activ-
ity, a concern which is readily addressed through encryption.

However, even if a user associates with an encrypted net-
work, it is possible to glean a great deal of information based
on data that the 802.11 protocol transmits in the clear. An
example is the contents of 802.11 probe request packets. To
discover networks in its vicinity, an 802.11 client broadcasts
probe requests containing the plain-text SSIDs of networks
it wishes to discover; if any of these networks receive the
request they send a corresponding probe response. Many
operating systems remember the full set of networks that a
user has previously associated with, and transmit this set of
SSIDs in probe request messages. As a result, by capturing
802.11 probe requests, we can learn the locations that a user
has previously visited.

To explore this, we wrote a query to capture 802.11 probe
requests and the SSIDs contained within them. We detected
21,546 unique clients with a mean of 470 probe requests sent
per client. Looking at the number of unique SSIDs observed
per client, the distribution is heavy-tailed, with only a single
SSID observed for the majority of clients. Nonetheless, a
number of clients probed for enough unique SSIDs, to reveal
significant information about their past behavior.

We manually inspected the top five clients by number of
unique SSIDs; they are summarized in Table 5. For each
SSID, we used the wigle.net wardriving database to at-
tempt to locate each network, and found for 4 of the 5 clients



Observed Scheduled Observed Scheduled Observed Scheduled Observed Scheduled
Time | Estimate | Time | Dir. Time Estimate | Time Dir. Time Estimate | Time Dir. Time Estimate | Time Dir.
7:10 In 7:03 In 9:55 Out 9:52 Out 16:24 | In 16:19 | In 19:48 | Out 19:48 | Out
7:34 Out* 7:30 In 10:11 | (none) 10:04 | In 16:52 | (none) 16:52 | Out 19:51 | In 19:48 | In
7:46 Out 7:39 Out 11:32 | Out 11:32 | Out 16:58 | In 16:56 | In 20:36 | In 20:36 | In
7:48 In 7:47 In 11:43 | In 11:41 | In 17:05 | In* 17:02 | Out 20:58 | Out 20:57 | Out
8:18 (none) 8:11 In 12:41 | In 12:36 | In 17:35 | Out 17:32 | Out 21:37 | In 21:36 | In
8:33 Out 8:30 Out 13:36 | Out 13:32 | Out 17:53 | (none) 17:51 | In 22:55 | (none) 22:52 | Out
8:57 In 8:40 In 14:20 | Out* 14:19 | In 17:56 | In* 17:52 | Out 23:37 | In 23:34 | In
9:08 Out 9:07 Out 15:14 | Out 15:12 | Out 18:33 | Out 18:32 | Out 00:25 | Out 00:22 | Out
9:22 In 9:18 In 16:13 | Out 16:12 | Out

Table 4. Train schedule (time and inbound/outbound direction) inferred from captured traffic (left) compared to the

true schedule published on the MBTA website (right) for Dec 9, 2009.

Rank  Total probe reqs  Unique SSIDs ~ Locatable SSIDs
1 7431 49 28

Locations: MBTA trains, Portland OR, Acton MA, Austin TX

2 87 48 11

Locations: Harvard, BU, MIT

3 370 46 10

Locations: Manchester UK, Belgium, Tulsa OK, Chicago IL, ...
4 632 47 10

Locations: Little Rock AR, Sacramento CA, Atlanta GA ...

5 120 47 0

Locations (none identified)

Table 5. Locations previously visited by users, inferred
from probe requests.

that many of the SSIDs had a unique geographic location.
The table lists some of the locations that each user is inferred
to have traveled based on their probe requests.

Clearly, this is a case where the 802.11 protocol is reveal-
ing potentially sensitive information about a user’s where-
abouts, well beyond the sensing range of the Argos network
itself. Most WiFi users are probably unaware of this feature
of 802.11. It is worth underscoring that this information is
revealed even if the user only ever associates with encrypted
networks. The use of probe requests to track users has been
previously proposed, although in a different context [37]; in-
stead of considering clients’ past behavior, as we do, the re-
searchers instead used the set of SSIDs that each user probes
for as a way to uniquely identify that user even if they spoof
their MAC address.

The tracking techniques described here can become more
powerful when used in conjunction. For example, user #1
above seems to be a frequent MBTA train user. We could
conceivably perform (i) fine-grained spatial and temporal
tracking over short distances (by mapping networks they are
observed to associate with), (ii) inference of spatial and tem-
poral behavior over moderate distances (by combining their
past behavior with MBTA train schedules), and (iii) coarse-
grained spatial (but not temporal) tracking over long dis-
tances (via mapping of probe requests’ SSIDs). There are
severe implications for user privacy if this technique were
employed on a wide scale.

8 Future Work and Conclusions

Understanding wireless network dynamics at urban scales
raises new challenges for capturing, processing, and analyz-
ing multiple streams collected from passive sniffers. Argos is
a unique kind of sensor network that combines the use of in-
network traffic processing, intelligent channel management,
and a rich user query interface to allow users to access this

complex source of ambient data. We have shown that Ar-
gos’ approach to in-network traffic processing substantially
reduces backhaul network load and that our dynamic channel
hopping strategy improves capture coverage. Through an ex-
tensive characterization of citywide WiFi traffic and several
case studies, we have demonstrated Argos’ ability to support
detailed analysis of the network behavior.

Several exciting areas remain as future work. The first
is introducing a more rigorous notion of privacy into the
user query interface. We are exploring the use of e-
differential privacy [35] which provides a very strong guar-
antee: namely, that a user issuing an aggregate query against
the system cannot learn anything more about an individual
user than the a priori information they already have. This
will require that Argos only respond to statistical queries,
rather than yielding specific details of individual packets or
users, but we believe this could be sufficient for many users.

A second future direction involves adding support for
other wireless network standards, including Bluetooth. Blue-
tooth devices are increasingly prevalent and much can be
learned from detecting their mobility and traffic patterns.
Lastly, we are interested in attempting to improve capture
coverage by incorporating mobile sniffer nodes into the sys-
tem (e.g. mounted on cars or buses [18]), or allowing in-
dividual users with laptops or WiFi enabled mobile phones
to run Argos sniffers on their own devices; this raises the
substantial challenge of managing the population of partic-
ipatory sensors and integrating their data with that captured
from static Argos nodes.
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