Cobra: Content-based Filtering and Aggregation of
Blogs and RSS Feeds

lan Rose, Rohan Murty, Peter Pietzuch, Jonathan Ledlie,
Mema Roussopoulos, and Matt Welsh
School of Engineering and Applied Sciences
Harvard University
{ianrose,rohan,prp,jonathan,mema,mdw}@eecs.harvard.edu

Abstract suited to tracking and indexing such rapidly-changing
Blogs and RSS feeds are becoming increasingly popular. Théontent. Many users make use of RSS feeds, which in
blogging site LiveJournal has over 11 million user accounts,conjunction with an appropriate reader, allow users to re-

and according to one report, over 1.6 million postings are made. ,; ; ; ; foti
to blogs every day. The “Blogosphere” is a new hotbed of(?:elve rapid updates to sites of interest. However, existing

Internet-based media that represents a shift from mostly statiRSS protocols require each client to periodically poll to
content to dynamic, continuously-updated discussions. Theeceive new updates. In addition, a conventional RSS

problem is that finding and tracking blogs with interesting con- PP ;
tent is an extremely cumbersome process. feed only covers an individual site, such as a blog. The

In this paper, we present Cobra (Content-Based RSS AgSUIrent approach used by many users is to rely on RSS
gregator), a system that crawls, filters, and aggregates Vaﬁggregators, such as Sh_arpRgader and FeedngQn, that
numbers of RSS feeds, delivering to each user a personalizegollect stories from multiple sites along thematic lines
feed based on their interests. Cobra consists of a three-tierek.g., news or sports).
network of crawlers that scan web feeddilters that match Our vision is to provide users with the ability to per-

crawled articles to user subscriptions, amflectorsthat pro- rm content-based filtering and agaregatiagross mil-
vide recently-matching articles on each subscription as an R?/f; 9 ggreg

feed, which can be browsed using a standard RSS reader. WiPNs of Web feeds, obtaining personalizedeed con-

present the design, implementation, and evaluation of Cobra if@ining only those articles that match the user’s interests.
three settings: a dedicated cluster, the Emulab testbed, and dhather than requiring users to keep tabs on a multitude of
PlanetLab. We present a detailed performance study of the Cdnteresting sites, a user would receive near-real-time up-
bra system, demonstrating that the system is able to scale wefgtes on their personalized RSS feed when matching ar-
to support a large number of source feeds and users; that the s are posted. Indeed, a number of “blog search” sites

mean update detection latency is low (bounded by the crawle . . .
rate); and that an offline service provisioning step combinedhave recently sprung up, including Feedster, Blogdigger,

with several performance optimizations are effective at reduc@nd Bloglines. However, due to their proprietary archi-
ing memory usage and network load. tecture, it is unclear how well these sites scale to handle

large numbers of feeds, vast numbers of users, and main-
tain low latency for pushing matching articles to users.
Conventional search engines, such as Google, have re-
Weblogs, RSS feeds, and other sources of “live” Inter-cently added support for searching blogs as well but also
net content have been undergoing a period of explosivavithout any evaluation.
growth. The popular blogging cite LiveJournal reports This paper describes Cobra (Content-Based RSS Ag-
over 11 million accounts, just over 1 million of which are gregator), a distributed, scalable system that provides
active over the last month [2]. Technorati, a blog track-users with a personalized view of articles culled from po-
ing site, reports a total of 50 million blogs worldwide; tentially millions of RSS feeds. Cobra consists of a three-
this number is currently doubling every 6 months [38]. tiered network otrawlersthat pull data from web feeds,
In July 2006, there were over 1.6 million blog postings filters that match articles against user subscriptions, and
every day. These numbers are staggering and suggestreflectorsthat serve matching articles on each subscrip-
significant shift in the nature of Web content from mostly tion as an RSS feed, that can be browsed using a standard
static pages to continuously updated conversations. RSS reader. Each of the three tiers of the Cobra network
The problem is that finding interesting content in this is distributed over multiple hosts in the Internet, allow-
burgeoning blogosphere is extremely difficult. It is un- ing network and computational load to be balanced, and
clear that conventional Web search technology is well-permitting locality optimizations when placing services.

1 Introduction

The core contributions in this paper are as follows. Traditional Distributed Pub-Sub Systems: A num-
First, Cobra makes use of a novel offliservice provi- ber of distributedopic-basegub-sub systems have been
sioningtechnique that determines the minimal amount ofproposed where subscribers register interest in a set of
physical resources required to host a Cobra network caspecific topics. Producers that generate content related
pable of supporting a given number of source feeds ando those topics publish the content on the corresponding
users. The technique determines the configuration of theopic channelqd12, 22, 27, 5, 6, 7] to which the users
network in terms of the number of crawlers, filters, andare subscribed and users receive asynchronous updates
reflectors, and the interconnectivity between these selvia these channels. Such systems require publishers and
vices. The provisioner takes into account a number ofubscribers to agree up front about the set of topics cov-
characteristics including models of the bandwidth andered by each channel, and do not permit arbitrary topics
memory requirements for each service and models of théo be defined based on a user’s specific interests.
feed content and query keyword distribution. The alternative to the topic-based systemsargent-

Our second contribution is a set of optimizations de-basedpub-sub systems [39, 37, 13, 40]. In these sys-
signed to improve scalability and performance of Co-tems, subscribers describe content attributes of interest
bra under heavy load. First, crawlers are designed taising an expressive query language and the system filters
intelligently filter source feeds using a combination of and matches content generated by the publishers to the
HTTP header information, whole-document and per-subscribers’ queries. Some systems support both topic-
article hashing. These optimizations result in a 99.8%based and content-based subscriptions [32]. For a de-
reduction in bandwidth usage. Second, the filter serviceailed survey of pub-sub middleware literature, see [31].
makes use of an efficient text matching algorithm [18, Cobra differentiates itself from other pub-sub systems
29] allowing over 1 million subscriptions to match anin- in two ways. First, distributed content-based pub-sub
coming article in less than 20 milliseconds. Third, Cobrasystems such as Siena [13] leave it up to the network ad-
makes use of a novel approach for assigning source feedginistrator to choose an appropriate overlay topology of
to crawler instances to improve network locality. We per-filtering nodes. As a result, the selected topology and the
form network latency measurements using the King [24]number of filter nodes may or may not perform well with
method to assign feeds to crawlers, improving the la-a given workload and distribution of publishers and sub-
tency for crawling operations and reducing overall net-scribers in the network. By providing a separate provi-
work load. sioning component that outputs a custom-tailored topol-

The third contribution is a full-scale experimental ogy of processing services, we ensure that Cobra can
evaluation of Cobra, using a cluster of machines at Harsupport a targeted work load. Our approach to pub-sub
vard, on the Emulab network emulation testbed, and orsystem provisioning is independent from our application
PlanetLab. Our results are based on measurements dbmain of RSS filtering and could be used to provision
102,446 RSS feeds retrieved frayndic8.com and a general-purpose pub-sub system like Siena, as long as
up to 40 million emulated user queries. We present aappropriate processing and I/O models are added to the
detailed performance study of the Cobra system, demonrservice provisioner.
strating that the system is able to scale well to support Second, Cobra integrates directly with existing pro-
a large number of source feeds and users; that the meagdcols for delivering real-time streams on the Web —
update detection latency is low (bounded by the crawlehamely, HTTP and RSS. Most other pub-sub systems
rate); and that our offline provisioning step combinedsuch as Siena do not interoperate well with the current
with the various performance optimizations are effectiveweb infrastructure, for example, requiring publishers to
at reducing overall memory usage and network load. change the way they generate and serve content, and re-

quiring subscribers to register interest using private sub-
2 Related Work scription formats. In addition, the_filtering model is

targeted at structured data conforming to a well-known
Our design of Cobra is motivated by the rapid expan-schema, in contrast to Cobra’s text-based queries on (rel-
sion of blogs and RSS feeds as a new source of reaRtively unstructured) RSS-based web feeds.
time content on the Internet. Cobra is a fornmcohtent- Peer-to-Peer Overlay Networks: A number of
based publish-subscribe systehat is specifically de- content-delivery and event notification systems have
signed to handle vast numbers of RSS feeds and a largeeen developed using peer-to-peer overlay networks,
user population. Here, we review previous work in pub-where the premise is that these systems are highly dy-
sub systems, both traditional and peer-to-peer designsiamic and can contain a large number of nodes exhibit-
The database community has also developed systems farg high rates of churn. As we explain in Section 3, we
guerying large numbers of real-time streams, some oflo not envision running Cobra in a peer-to-peer setting
which are relevant to Cobra. where nodes are contributed by volunteers, but instead

assume the use of well-provisioned hosting centers, as
is currently the norm for commercial Internet services.
Nonetheless, it is worth describing some of the other de-
sign differences with these systems.

Corona [34] is a pub-sub system for the Web built
on top of Pastry [35]. Users specify interest in specific
URLs and updates are sent to users using instant mes-
sage notifications. The main goal of Corona is to mit-
igate thepolling overheadplaced on monitored URLS,
which is accomplished by spreading polling load among
cooperating peers and amortizing the overhead of crawl-
ing across many users interested in the same URL. An
informed algorithm determines the optimal assignmentFigure 1: The Cobra content-based RSS aggregation net-
of polling tasks to peers to meet system-wide goals suchork.
as minimizing update detection time or minimizing load
on content servers.

Corona is strictly concerned with allowing users to
monitor an individual URL and focuses on the efficiency

users

reflectors

filters

nies and little is known about how they operate. In par-
ticular, their ability to scale to large numbers of feeds and
users, use network resources efficiently, and maintain

of the polling operation. Unlike Cobra, Corona does!oW update Iaﬁenmesslunknownf. InSec’:lofnﬁwe attempt
not permit an individual user to monitor a large number!© Measure the update latency of several of these sites. As

of web feeds simultaneously, nor specify content-based®” MSN and Google, we expect these sites leverage the

predicates on which content should be pushed to the useyast numbers of server resources distributed across many

Like Cobra, Corona can interoperate seamlessly with th&@t@ centers to rapidly index updates to blogs. Although
current pull-based Web architecture. an academic research group cannot hope to garner these

A number of application-level multicast systems [36, Flnh(is Of. resoutrcetsoi by develop(ljng Ctpbra Wz ?O%e t(;rs?ed
43] have been built using DHTs that construct an in- 'ght on important design considerations and tradeotis for

formation dissemination tree with the multicast groupthIS interesting application.
members as leaf nodes. The resulting application-leve .

multicast service is similar to the aforementioned topic—é Cobra System Design

based pub-sub systems without content-based filteringrhe overall architecture of Cobra is shown in Figure 1.
The multicast tree is formed by joining the routes from Cobra consists of a three-tiered networkcedwlers fil-

each subscriber node to a root node. In contrast, Cobrgers andreflectors Crawlers are responsible for period-
constructs an overlay topology using a service provisionically crawling web feeds, such as blogs, news sites, and
ing technique, taking into account the required resourcegther RSS feeds, which we collectively catiurce feeds

to support a target number of source feeds and users. A source feed consists of a seriesadiicles The number

Real-time Stream Querying: There has been much of articles provided by a source feed at any time depends
recent work from the database community on continuousn how it is configured; a typical blog or news feed will
querying of real-time data streams located at geographienly report the most recem® articles or so. As described
cally dispersed data sources. These include Medusa [15helow, Cobra crawlers employ various techniques to re-
PIER [25], IrisNet [21], Borealis [14], and Stream- duce polling load by checking for updates in the source
Based Overlay Networks [33]. These systems provide deeds in a lightweight manner.
general-purpose service for distributed querying of data Crawlers send new articles to the filters, which match
streams, tend to assume a relational data model, and preéhe content of those articles against the set of ssbr
vide an elaborate set of operators to applications. Coscriptions using a case-insensitive, index-based match-
bra, on the other hand, is specifically designed to filtering algorithm. Articles matching a given subscription are
and deliver relatively unstructured RSS feeds, provides @ushed to the appropriate reflector, which presents to the
simple keyword-based query format to the user, and haend user a personalized RSS feed that can be browsed us-
models of the resource consumption of its crawler, filter,ing a standard RSS reader. The reflector caches the last
and reflector services used for provisioning. k matching articles for the feed (whekas typically 10),

Blog Search Engines:Recently, a number of “blog requiring that the user poll the feed periodically to ensure
search engines” have come online, including Feedstethat all matching articles will be detected. This behavior
Blogdigger, Bloglines, IceRocket, and Technorati. Apartmatches that of many existing RSS feeds that limit the
from Google and MSN's blog search services, most ofnumber of articles included in the feed. Although the re-
these sites appear to be backed by small startup comp#lector must be polled by the user (as required by current

RSS standards), this polling traffic is far less than requir<changed is broken up into its individual articles éor-
ing users to poll many thousands of source feeds. Also, itries), which are henceforth processed individually. A
is possible to replace or augment the reflector with pushhash is computed on each of the individual articles, and
based notification mechanisms using email, instant meghose matching a previously-hashed article are filtered
saging, or SMS; we leave this to future work. out. As we show in Section 4, these techniques greatly
The Cobra architecture uses a simple congestion correduce the amount of traffic between source feeds and
trol scheme that applies backpressure when a service grawlers and between crawlers and filters.
unable to keep up with the incoming rate of data from . .
upstream services. Each service maintains a 1MB data-2 Filter service
buffer for each upstream service. If an upstream serThe filter service receives updated articles from crawlers
vice sends data faster than it can be processed, the dagad matches those articles against a ssubbcriptions
buffer will fill and any further send attempts will block Each subscription is a tuple consisting afzbscription
until the downstream service can catch up, draining theD, reflector ID, and list ofkeywords The subscription
buffer and allowing incoming data again. This ensuresiD uniquely identifies the subscription and the reflector
that the crawlers do not send new articles faster than theD is the address of the corresponding reflector for that
filters can process them, and likewise that the filters dayser. Subscription IDs are allocated by the reflectors
not pass on articles faster than the reflectors can procesghen users inject subscriptions into the system. Each
them. The provisioner (detailed in section 3.5) takes thissubscription has a list of keywords that may be related
throttling behavior into account when verifying that each py either conjunctions (e.g. “law AND internet”), dis-
crawler will be able to finish crawling its entire list of junctions (e.g. “copyright OR patent”), or a combination
feeds every 15 minutes (or whatever tbawl-rateis of both (e.g. “(law AND internet) OR (privacy AND in-
specified to be). ternet)”). When an article is matched against a given sub-
scription, each word of the subscription is marked either
true or falsebased on whether it appears anywhere in the
The crawler service takes in a list of source feeds (giverarticle; if the resulting boolean expression evaluates to
as URLs) and periodically crawls the list to detect newtrue then the article is considered to have matched the
articles. A naive crawler would periodically download subscription.
the contents of each source feed and push all articles con- Given a high volume of traffic from crawlers and a
tained therein to the filters. However, this approach canarge number of users, it is essential that the filter be able
consume a considerable amount of bandwidth, both foto match articles against subscriptions efficiently. Co-
downloading the source data and sending updates to thgra uses the matching algorithm proposed by Fabtet
filters. In a conventional usage of RSS, many users perial. [18, 29]. This algorithm operates in two phases. In
odically polling a popular feed can have serious networkthe first phase, the filter service uses an index to deter-
impact [34]. Although Cobra amortizes the cost of crawl- mine the set of all words (across all subscriptions) that
ing each feed across all users, the sheer number of feedge matched by any article. This has the advantage that
demands that we are careful about the amount of networlgords that are mentioned in multiple subscriptions are
bandwidth we consume. only evaluated once. In the second phase, the filter de-
The Cobra crawler includes a number of optimiza-termines the set of subscriptions in which all words have
tions designed to reduce bandwidth usage. Firsta match. This is accomplished by ordering subscriptions
crawlers attempt to use the HTTIRst-Modified according to overlap and by ordering words within sub-
andETag headers to check whether a feed has been upscriptions according to selectivity, to test the most selec-
dated since the last polling interval. Second, the crawletive words first. If a word was not found in the first phase,
makes use of HTTP delta encoding for those feeds thaall subscriptions that include that word can be discarded
support it. without further consideration. As a result, only a frac-
When it is necessary to download the content for ation of the subscriptions are considered if there is much
feed (because its HTTP headers indicate it has changedyerlap between them.
or if the server does not provide modification informa- Due to its sub-linear complexity, the matching algo-
tion), the crawler filters out articles that have been previ-rithm is extremely efficient: matching a single article
ously pushed to filters, reducing bandwidth requirementsagainst 1 million user subscriptions has a 90th percentile
further and preventing users from seeing duplicate refatency of just 10 ms (using data from real Web feeds and
sults. We make use of two techniques. First, a whole-synthesized subscriptions, as discussed in Section 4). In
document hash using Java’s hashCode function is coneontrast, a naive algorithm (using a linear search across
puted; if it matches the previous hash for this feed, thehe subscription word lists) requires more than 10 sec
entire document is dropped. Second, each feed that hagross the same 1 million subscriptions, a difference of

3.1 Crawler service

four orders of magnitude. a value that is typical for many popular RSS feeds (see
Figure 5). Another approach might be to dynamically set
the value oft based on the user’s individual polling rate
The final component of the Cobra design is the reflectoor the expected popularity of a given subscription. We
service, which receives matching articles from filters andeave these extensions to future work.
reflects them as a personalized RSS feed for each user. In the worst case, this model of user feeds leads to a
In designing the reflector, several questions arose. Firstnemory usage of subscriptions * 1K B (assuming
should the filter service send the complete article bodyarticles are capped at 1KB of size). However, in practice
a summary of the article, or only a link to the article? the memory usage is generally much lower since articles
Clearly, this has implications for bandwidth usage. Sec-can be shared across multiple subscriptions. In the event
ond, how should filters inform each reflector of the setthat memory does become scarce, a reflector will begin
of matching subscriptions for each article? As the num-dropping the content of new articles that are received,
ber of matching subscriptions increases, sending a list ofaving to users’ feeds only the articles’ titles and URLSs.
subscription IDs could consume far more bandwidth thanThis greatly slows the rate of memory consumption, but
the article contents themselves. if memory continues to dwindle then reflectors will begin
In our initial design, for each matching article, the fil- droppingall incoming articles (while logging a warning
ter would send the reflector a summary consisting of théhat this is happening). This process ensures a graceful
title, URL, and first 1 KB of the article body, along with degradation in service quality when required.
a list of matching subscription IDs. This simplifies the A user subscribes to Cobra by visiting a web site that
reflector’s design as it must simply link the received arti- allows the user to establish an account and submit sub-
cle summary to the personalized RSS feed of each of thecription requests in the form of keywords. The web
matching subscription IDs. Article summaries are sharederver coordinates with the reflectors and filterisisan-
across subscriptions, meaning if one article matches mukiate a subscription, by performing two actions: (1) asso-
tiple subscriptions, only one copy is kept in memory onciating the user with a specific reflector node; and (2) in-
the reflector. jecting the subscription details into the reflector node and
However, with many active subscriptions, the user listthe filter node(s) that feed data into that reflector. The re-
could grow to be very large: with 100,000 matching sub-sponse to the user’s subscription request is a URL for a
scriptions on an article and 32-bit subscription IDs, thisprivate RSS feed hosted by the chosen reflector node. In
translates into 400KB of overheaer articlebeing sent our current prototype, reflector nodes are assigned ran-
to the reflectors. One alternative is to use a bloom filterdomly to users by the Web server, but a locality-aware
to represent the set of matching users; we estimate thamechanism such as Meridian [42] or OASIS [20] could
a 12KB filter could capture a list of 100,000 user IDs easily be used instead.
with a false positive rate of 0.08%. However, this would .
require the reflector to test each user ID against the ﬁl-3'4 Hosting model
ter on reception, involving a large amount of additional Although “peer to peer,” self-organizing systems based
computation. on shared resources contributed by volunteers are cur-
In our final design, the filter sends the complete articlerently en vogue, we are not sure that this model is the
body to the reflector without a user list, and the reflectorbest for provisioning and running a service like Cobra.
re-runsthe matching algorithm against the list of active Rather, we choose to exploit conventional approaches
subscriptions it stores for the users itis serving. Since th¢o distributed systems deployment, making use of well-
matching algorithm is so efficient (taking 10ms for 1 mil- provisioned hosting centers, which is the norm for com-
lion subscriptions), this appears to be the right trade-offmercial Internet services. Each of the three tiers of Cobra
between bandwidth consumption and CPU overhead. Inean be distributed over multiple hosts in the Internet, al-
stead of sending the complete article, we could insteadbwing computational and network load to be balanced
send only the union of matching words across all match-across servers and hosting centers. Distribution also al-
ing subscriptions, which in the worst case reduces tdows the placement of Cobra services to take advantage
sending the full text. of improved locality when crawling blogs or pushing up-
For each subscription, Cobra caches thefasiatch- dates to users.
ing articles, providing a personalized feed which the user The use of a hosting center model allows us to make
can access using a standard RSS reader. The value ofcertain assumptions to simplify Cobra’s design. First, we
must be chosen to bound memory usage while providassume that physical resources in a hosting center can be
ing enough content that a user is satisfied with the “hits’dedicated to running Cobra services, or at least that host-
using infrequent polling; typical RSS readers poll everying centers can provide adequate virtualization [4, 10]
15-60 minutes [28]. In our current design, we ket 10, and resource containment [9] to provide this illusion.

3.3 Reflector service

Second, we assume that Cobra services can be replitot permit multiple services within a hosting center to
cated within a hosting center for increased reliability. share resources (e.g., bandwidth). A more sophisticated
Third, we assume that hosting centers are generally wellalgorithm could take such resource sharing into account.
maintained and that catastrophic outages of an entire The provisioner attempts to configure the network to
hosting center will be rare. Cobra can tolerate outagesneet the target number of source feeds and users while
of entire hosting centers, albeit with reduced harvest angninimizing the number of services. The algorithm oper-
yield [19]. Finally, we assume that allocating resourcesates as follows. It starts with a simple 3-node topology
to Cobra services and monitoring their performance awith one crawler, one filter, and one reflector. In each it-
runtime can be performed centrally. These assumptiongration, the algorithm identifies any constraint violations
strongly influence our approach to service provisioningin the current configuration, and greedily resolves them
as we are less concerned with tolerating unexpected varby decomposingervices as described below. When no
ations in CPU and network load and intermittent link andmore violations exist, the algorithm terminates and re-
node failures, as is commonly seen on open experimentgorts success, or if a violation is found that cannot be
testbeds such as PlanetLab [30]. resolved, the algorithm terminates and reports failure.

An out-decompositiomesolves violations by replac-
ing a single service with replicas such that all incom-
As the number of source feeds and users grows, there {5 |inks from the original service are replicated across
a significant challenge in how to provision the service inypqo replicas, whereas the outgoing links from the orig-
terms of computational horsepower and network band;ng| services are load balanced across the replicas. An
width. Server and network resources cost money; add'fn-decompositiordoes the opposite: a single service is
tionally, a system may have limitations on the amount Ofreplaced byn replicas such that all outgoing links from
physical resources available. Our goal is to determine thg,o original service are replicated across the replicas,

minimal amount of physical resources required to host 8hereas the incoming links from the original services are
Cobra network capable of supporting a given number ofy54 palanced across the replicas.

source feeds and users. For this purpose, we make use of In resolving a violation on a service, the choice of
an offlineservice provisioningechnique that determines decomposition type (in- or out-) depends both on the

the configuration of t_he Cobra network in terms of thetype of violation (in-bandwidth, out-bandwidth, CPU, or
number of crawlers, filters, and reflectors, as well as th‘?nemory) and the type of service (crawler, filter or reflec-

interconnectivity between these services. Due to spacgor)_ Figure 3 shows which decomposition is used in each
constraints, we only provide an informal description of situation

theTsherwce pr.OV'S'OtmEg aIgonthn:. the t ¢ b When faced with multiple violations, the algorithm
€ Provisioner takes as inputs the target numboer OL es a few simple heuristics to choose the order in which

source feeds and users, a model of the memory, CPU a gsresolve them. Some violations have the potential to

bandwidth requirements for each service, as well as othgly ro.q5eq indirectly in the course of resolving other vi-
parameters such as distribution of feed sizes and the peg;

r polling rate. The provisioner also tak inout lations. For example, if a crawler service has both in-
user pofling rate. € provisioner aiso 1akes as NPut §,, ,\iqth and out-bandwidth violations, resolving the

set of node constraints, consisting of limits on inbound.

d outbound bandwidth . ilable t in-bandwidth violation is likely to also resolve the out-
and outbound banawidin, maximum memory avarable lo, 4, iqth violation (by reducing the number of feeds

the JVM, and CPU processing power. Note that this IaStcrawled, we also implicitly reduce the number of feed

Vf""“e IS d'ﬁlcu.lt to measure directly and thu§ we model Itupdates that are found and output by the crawler). Thus
simply as a dimensionless parameter relative to the pro-

. \ it is preferable in this case to resolve the in-bandwidth
C‘h*.ss'”g p::erformancle obseFr)ved on Emula?s ?CSOO?.m%/'iolation first as it may solve both violations with one
fh;??ﬁe' pr?)rv?s)i(grrzze z,hiucltd gscsiﬁér?g[ton(?dei l;:ﬁ) ;)erz_decomposition. In general, when choosing which of mul-
cess messages only 75% as fast as the pc3000s. The ptﬁ;_le _/lola_tlons tc_; resolve first, the a_Igorlthm will chooge

o . . . i e violations with the least potential to be resolved in-
visioner's output is a graph reprgsentlng the topology o directly, thus saving the violations with higher potential
the Cobra network graph, including the number of feeds

. .~ ~~until as late as possible (in the hopes that they will “hap-
assigned to each crawler and the number of SUbSCI’IptIOFlEen to be resoI\F/)ed" in th(e mean ti?'ne) y P
assigned to each reflector and each filter. '

The provisioner models each Cobra service as run- Although this greedy approach might lead to local

. . L minima and may in fact fail to find a topology that satis-
ning on a separate physical host with independent mem; . : X .
. . ! . _fies the input constraints when such a configuration does
ory, CPU and bandwidth constraints. This results ina__. . . :
.) . . exist, in practice the algorithm produces network topolo-
conservative estimate of resource requirements as it do€s .
gles with a modest number of nodes to handle large

13.0 GHz 64-bit Xeon processors loads. We chose this greedy iterative approach because it

3.5 Service provisioning

= ° =
(a) Configuration for 4x CPU and 25 Mbps bandwidth (b) Configuration for 1x CPU and 100 Mbps bandwidth

Figure 2: Operation of the Cobra network provisioner. These figures show how provisioner results can vary for different
constraint combinations; in both of these cases the network is provisioned for 800,000 feeds, 8 million subscriptions, and 1024 MB
of memory, but the CPU and bandwidth constraints differ. (a) Shows the resulting configuration when the CPU constraint is 4x the
default value (see text) and the bandwidth constraint is 25 Mbps. (b) Shows the resulting configuration when the CPU constraint is
the default value (1x) and the bandwidth constraint is 100 Mbps. Compared to (a), this configuration requires half the number of
crawlers, 50% more reflectors and three times as many filters (on account of the much greater processing needs).

Service | Violation | Decomposition| Reason
In-BW In Reduces the number of feeds crawled.
Crawler | OuUt-BW | In Reduces the rate that updates are found and output to filters.
CPU None Not modeled
Memory | None Not modeled
In-BW In Reduces the number of crawlers that send updates to each filter.
Out-BW | In Reduces the rate that articles are received, and thus also the rate that
Filter articles are output to reflectors.
CPU Out Reduces the number of subscriptions that articles must match against.
Memory | Out Reduces the number of subscriptions that must be stored on the filter.
In-BW None Not resolvable because reflectors must receive updates from all feeds
(otherwise users will not receive all articles that match their subscription).
Out-BW | Out Reduces the subscriptions held by each reflector, which reduces the
Reflector expected frequency of web queries by users.
CPU Out Reduces the number of subscriptions that each incoming articles must be
matched against and the number of article-queues that must be updated.
Memory | Out Reduces the number of subscriptions and article lists that must be stored.

Figure 3:Provisioner choice of decomposition for each service/violation combination.

was conceptually simple and easy to implement. Figure 2ocality gains for crawling and reflecting (described be-
shows two provisioner topologies produced for differentlow). An alternate mechanism could make use of previ-
input constraints. ous work on network-aware service placement to mini-
mize bandwidth usage [8, 33].

After deployment, it is essential that the performance
The output of the provisioner isvartual graph(see Fig- of the Cobra network be monitored to validate that it is
ure 2) representing the number and connectivity of themeeting targets in terms of user-perceived latency as well
services in the Cobra network. Of course, these seras bandwidth and memory constraints. Also, as the user
vices must be instantiated on physical hosts. A widepopulation and number of source feeds grow it will be es-
range of instantiation policies could be used, dependingential to re-provision Cobra over time. We envision this
on the physical resources available. For example, a smafirocess occurring over fairly coarse-grained time peri-
startup might use a single hosting center for all of the serods, such as once a month or quarter. Each Cobra node
vices, while a larger company might distribute servicesis instrumented to collect statistics on memory usage,
across multiple hosting centers to achieve locality gainsCPU load, and inbound and outbound bandwidth con-
Both approaches permit incremental scalability by grow-sumption. These statistics can be collected periodically
ing the number of machines dedicated to the service. to ascertain whether re-provisioning is necessary.

The Cobra design is largely independent of the mech- .
anism used for service instantiation. In our experi-?"7 Source feed mapping
ments described in Section 4, we use different strategie®nce crawler services have been instantiated, the final
based on the nature of the testbed environment. In oustep in running the Cobra network is to assign source
dedicated cluster and Emulab experiments, services afeeds to crawlers. In choosing this assignment, we are
mapped one-to-one with physical hosts in a round-robirconcerned not only with spreading load across multiple
fashion. In our PlanetLab experiments, services are diserawlers, but also reducing the totaétwork loadthat
tributed randomly to achieve good coverage in terms othe crawlers will induce on the network. A good way of

3.6 Service instantiation and monitoring

reducing this load is to optimize the locality of crawlers
and their corresponding source feeds. Apart from beinc. SN i

good network citizens, improving locality also reduces “ . > @ﬁ ,
the latency for crawling operations, thereby reducing the Aﬁ SR @
update detection latency as perceived by users. Becau: iivd {
the crawlers use fairly aggressive timeouts (5 sec) tc
avoid stalling on slow feeds, reducing crawler-feed la-

. . . Figure 4: An example of locality-aware source feed map-
tency also increases the overall yield of a crawling cycle.ping_ Three crawlers are shown as circles and the 5 near-

. . est source feeds, according to estimated latency, are

In Cobra, we assign source feeds to crawlers in &y as triangles. Colors indicate the mapping from
latency-aware fashion. One approach is to have eacfeeds to crawlers, which is also evident from the geo-
crawler measure the latency to all of the source feedsgraphic layout.

and use this information to perform a coordinated allo-
cation of the source feed list across the crawlers. Alter3 8 |mplementation
nately, we could make use of network coordinate sys-

tems, such as Vivaldi [17], which greatly reduces IoingOur prototype of Cobra is implemented in Java, and
makes use of our substrate &iream-based overlay net-

load by mapping each node into a low-dimensional coor- . :
dinate space, allowing an estimate of the latency betwee orks (SBONs) [33]. for setting up and managing data
ws between services. Note, however, that the place-

any two hosts to be measured as the Euclidean distan .) : :
in the coordinate space. However, such schemes requilrgent of Cobra services onto physical hosts is determined

end hosts to run the network coordinate software, WhiCﬁtatically,. at ir_lstantiation. time, rather than dynamically
is not possible in the case of oblivious source feeds. as described in our previous work [3.3]' A pentmln-
troller nodehandles provisioning and instantiation of the
Instead, we perform an offline measurement of the |a.Cobra network. The provisioner outputs a logical graph
tency between each of the source feeds and crawler nod¥é1ich is then instantiated on physical hosts using a (cur-
using King [24]. King estimates the latency between anyrently rgndom) allopauon of services to hostg._ The in-
two Internet hosts by performing an external measureStantiation mechanism depends on the specific deploy-
ment of the latency between their corresponding DNSMenNt environment.
servers; King has been reported to have a 75th percentile Our implementation of Cobra consists2f178 lines
error of 20% of the true latency value. It is worth noting Of Java code in total. The crawler service2isls lines,
that many source feeds are hosted by the same IP addreéde filter service is1258 lines, and the reflector is
so we achieve a significant reduction in the measuremerfi22 lines. The controller code i877 lines, while the
overhead by limiting probes to those nodes with unique’€mMaining24476 consists of our underlying SBON sub-
IP addresses. In our sample of 102,446 RSS feeds, thefdrate for managing the overlay network.
are only 591 unique IP addresses.

4 Evaluation
Given the latency matrix between feeds and crawlers,
we perform assignment using a simple first-fit bin- We have several goals in our evaluation of Cobra. First,
packing algorithm. The algorithm iterates through eachwe show that Cobra can scale well to handle a large num-
crawlerC; and calculates® = arg min [(F}, C;), where !oer_ of source feegls and user subsgrlptlons. Scalability
I() is the latency betweed; and C;. F;. is then as- IS limited by service resource requirements (CPU e_md
signed toC;. Given F feeds andC' crawlers, we as- memory usage) as well as network bandwidth require-
sign F'/C feeds to each crawler (assumifg> C). We ~ ments. However, a modestly-sized Cobra network (Fig-
have considered assigning varying number of feeds téife 2) can handle 8M users and 800,000 source feeds.
crawlers, for example, based on the posting activity ofSecond, we show that Cobra offers low latencies for dis-
each feed, but have not yet implemented this technique covering matching articles and pushing those updates to
users. The limiting factor for update latency is the rate at
Figure 4 shows an example of the source feed mapwhich source feeds can be crawled, as well as the user’s
ping from one of our experiments. To reduce clutterown polling interval. We also present data comparing
in the map we show only 3 crawlers (one in the US,these update latencies with three existing blog search en-
one in Switzerland, and one in Japan) and the 5 neareglines: Google Blog Search, Feedster, and Blogdigger.
crawlers, according to estimated latency, for each. The We present results from experiments on three plat-
mapping process is clearly effective at achieving goodorms: a local cluster, the Utah Emulab testbed [41],
locality and naturally minimizes traffic over transoceanicand PlanetLab. The local cluster allows us to mea-
links. sure service-level performance in a controlled setting, al-

median| 90th percentilg] mm
Size of feed (bytes) | 7606 | 22890 "
Size of feed (articles)| 10 17 -
Size of article (bytes) | 768 2426 . i
Size of article (words)| 61 637 N
Figure 5:Properties of Web feeds used in our study. E . ?'i
£
§ 'mm
though scalability is limited. Our Emulab results allow E '

us to scale out to larger configurations. The PlanetLat
experiments are intended to highlight the value of source
feed clustering and the impact of improved locality.

We use a combination of real and synthesized wel
feeds to measure Cobra’s performance. The real feec
consist of a list of 102,446 RSS feeds from syndic8.com,
an RSS directory site. The properties of these feeds werdrigure 6:Relationship between feed size and crawl time.
studied in detail by Liu et al. in [28]. To scale up to
larger numbers, we implemented an artifidie¢d gen-
erator. Each generated feed consists of 10 articles with 8%
words chosen randomly from a distribution of English
words based on popularity rank from the Brown cor- g
pus [3]. Generated feed content changes dynamicallyy
with update intervals similar to those of real feeds, baseds
on data from [28]. The feed generator is integrated into §

1024

the crawler service and is enabled by a runtime flag. = il
Simulated user subscriptions are similarly generated 256 M

with a keyword list consisting of the same distribution as 128 S e tone o

that used to generate feeds. We exclude the top 29 most oM eetone e

popular words, which are considered excessively general % 10000 20000 30000 40000 50000 60000

and would match essentially any article. (We assume that Articles Received

these words would normaly be ignored by the subscrip 0Ufe T emenseage o e stecty seres v e,
tion web portal when a user initially submits a SUbscrip'by the reflector. Forgcontext, we estimate that a set of 1 million
tion request.) The number of words in each query is chofeeds can be expected to produce an average4®.5 updated
sen from a distribution based on a Yahoo study [11] ofarticles every second, 6r2910 each minute.
the number of words used in web searches; the median
subscription length is 3 words with a maximum of 8. ning at Princeton. The figure shows a wide variation in
All simulated user subscriptions contain only conjunc-the size and crawl time of each feed, with no clear re-
tions between words (no disjunctions). In Cobra, we ex-ationship between the two. The large spike around size
pect that users will typically submit subscription requests8000 bytes represents a batch of 36,321 RSS feeds hosted
with many keywords to ensure that the subscription is a®y topix.net It turns out these are not static feeds but
specific as possible and does not return a large numbétynamically-generated aggregation feeds across a wide
of irrelevant articles. Given the large number of simu-range of topics, which explains the large variation in the
lated users, we do not actively poll Cobra reflectors, butcrawl time.
rather estimate the additional network load that this Pro4 o Microbenchmarks
cess would generate.
. Ouir first set of experiments measure the performance of

4.1 Properties of Web feeds the individual Cobra services.
Liu et al. [28] present a detailed evaluation of the prop-
erties of RSS feeds, using the same list of 102,446 RS&1€MOry usage
feeds used in our study. Figure 5 summarizes the siz€igure 7 shows the memory usage of a single Reflec-
of the feeds and individual articles observed in a typi-tor service as articles are received over time. In each
cal crawl of this set of feeds between October 1-5, 2006case, the usage follows a logarithmic trend. However, the
The median feed size is under 8 KB and the median numeurves’ obvious offsets make it clear that the number of
ber of articles per feed is 10. subscriptions stored on each reflector strongly influences

Figure 6 shows a scatterplot of the size of each feedts memory usage. For example, with a half-million sub-
compared to its crawl time from a PlanetLab node run-scriptions, the memory usage reachexl0 MB after re-

ceiving 60,000 articles, whereas with 1 million subscrip-

tions the memory usage reaches nearly 500 MB. This is
not surprising; not only must reflectors store each actual
subscription (for matching), but also each user’s list of

articles.

However, after the initial burst of article storage, the
rate of memory consumption slows dramatically due to
the cap (ofk = 10) on each user’s list of stored arti-
cles. This cap prevents users with particularly general
subscriptions (that frequently match articles) from con-
tinually using up memory. Note that in this experiment
no articles (or article contents) were dropped by the re-
flectors’ scarce memory handling logic (as described in 400
section 3.3). The only time that articles were dropped
was when a user’s list of stored articles exceeded the size 4,
cap.

This experiment assumes that articles are never ex- e ©
pired from memory (except when a user’s feed grows Incoming bandwidth Outgoing bandwidth
beyond lengthk). It is easy to envision an alternative
design in which a user’s article list is cleared whenever

P) Figure 8:Bandwidth reduction due to intelligent crawling.
it is polled (by the user's RSS reader) from a reerctor.This graph shows the amount of data generated by the crawler

Depending on the frequency of user polling, this may de-using different techniques: (a) crawl all feeds; (b) filter based
crease overall memory usage on reflectors but an analys@# last-modified header; (c) filter based on whole-document

of the precise benefits is left to future work. hash; and (d) filter based on per-article hashes.

In contrast, the memory usage of the crawler and filter
services does not change as articles are processed. Abflifficult to differentiate network effects.
crawlers, the memory usage while running is essentially Figure 9 shows the time to crawl the remaining
constant since crawlers are unaffected by the number 034,092 RSS feeds distributed across 481 unique IP ad-
subscriptions. For filters, the memory usage was foundiresses. 11 crawlers were run on PlanetLab distributed
to vary linearly with the number of subscriptions@.16 across North America, Europe, and Asia. With locality
MB per 1000 subscriptions held) and thus changes onljgware mapping, the median crawl time per feed drops
when subscriptions are added or removed. from 197 ms to 160 ms, a reduction of 18%.

No filtering

1194.7
1194.7

Last-modified check

1200

Document hash
Article hash

1000

800

600

Bandwidth (KB/sec)

517.2

@
<

Crawler performance Filter performance

Figure 8 shows the bandwidth reduction resulting fromFigure 10 shows the median time for the filter's match-
optimizations in the crawler to avoid crawling feeds thating algorithm to compare a single article against an in-
have not been updated. As the figure shows, using lastreasing number of user subscriptions. The matching al-
modified checks for reading data from feeds reduces thgorithm is very fast, requiring less than 20 ms to match
inbound bandwidth by 57%. The combination of tech-an article of 2000 words against 1 million user subscrip-
niques for avoiding pushing updates to the filters resultgions. Keep in mind that according to Figure 5 that the
in a 99.8% reduction in the bandwidth generated by thenedian article size is just 61 words, so in practice the
crawlers, a total of 2.2 KB/sec for 102,446 feeds. Wematching time is much faster: we see a 90th percentile of
note that none of the feeds in our study supported thgust 2 ms per article against 1 million subscriptions. Of
use of HTTP delta encoding, so while this technique iscourse, as the number of incoming articles increases, the
implemented in Cobra it does not yield any additional overall matching time may become a performance bottle-
bandwidth savings. neck, although this process is readily distributed across
The use of locality-aware clustering should reduce themultiple filters.
time to crawl a set of source feeds, as well as reduce -
overall network load. From our initial set of 102,446 4.3 Scalability measurements
feeds, we filtered out those that appeared to be dowiio demonstrate the scalability of Cobra with a large num-
as well as feeds from two aggregator sitegix.netand ber of feeds and user subscriptions, we ran additional ex-
izynews.dgthat together constituted 50,953 feeds. Thesgeriments using the Utah Emulab testbed. Here, we are
two sites host a large number of dynamically-generatednterested in two key metrics: (1) THendwidth con-
feeds that exhibit a wide variation in crawl times, making sumptionof each tier of the Cobra network, and (2) The

' JpO) R Subs | Feeds | Crawlers| Filters | Reflectors
P 10M | 1M 1 28 28
un P 20M | 500,000| 1 25 25
40M | 250,000] 1 28 28
b 1M | 100,000 1 1 1
E o Figure 11: Topologies used in scalability measurements.
| The last topology (100K feeds, 1M subscriptions) is meant to
i emulate a topology using the live set of 102,446 feeds.
E
f

nz

800 [~ Crawler out
T Filter out
rrant
oL i e 700 Reflector in
o oz o4 [oe [
Tirm ot o ull Mt (mecnrcis)

729.95
729.95

&
&
3
N
IS

600
Figure 9:Effect of locality-aware clustering. This is a CDF
of the time to crawl 34092 RSS feeds across 481 separate IP ad-
dresses from 11 PlanetLab hosts, with and without the locality
aware clustering.

500

400

Bandwidth (KB/sec)

20
100 words —+— 300

500 words
1000 words =%+ ‘
2000 words 1 y 200

[
13

100

1M subs 40M subs 20M subs 10M subs
100k feeds 250k feeds 500k feeds 1M feeds

Median match time (ms)
=
o

Figure 12:Bandwidth consumption of each tier. The band-

° 1 width of each tier is a function both of the number of feeds that
g ? are crawled and of the fan-out from each crawler to the filters.
— .
%000 10000 100000 16406 section 3.3).

Num subscriptions

Fi 10: Articl ch t ber of subscri Figure 12 shows the total bandwidth consumption
Igure 10:Article match time versus number of subscrip- ;
tions and number of words per article. The median time to of each tier of the Cobra network for each of the four

match an article is a function of the number of subscriptionstopologies evaluated. As the figure shows, total band-
and the number of words per article. width consumption remains fairly low despite the large
number of users and feeds, owing mainly to the effec-

latencyfor an updated article from a source feed to prop-tive use of intelligent crawling. Note that due to the rel-
agate through the three tiers of the network. In total, weatively large number of subscriptions in each topology,
evaluated four different topologies, summarized in Fig-the selectivityof the filter tier is nearly 1; every article
ure 11. will match some user subscription, so there is no no-

Each topology was generated by the provisioner withticeable reduction in bandwidth from the filter tier (the
a bandwidth constraint of 100 Mbgs a memory con- very slight increase in bandwidth is due to the addition
straint of 1024 MB, and a CPU constraint of the defaultof header fields to each article). One potential area for
value (1x). In addition, we explicitly over-provisioned future work is finding ways to reduce the selectivity of
by 10% as a guard against bursty traffic or unanticipatedhe filter tier. If the filters’ selectivity can be reduced,
bottlenecks when scaling up, but it appears that this wathat will reduce not only the filters’ bandwidth consump-
an largely unnecessary precaution. Each topology wason, but also the number of reflectors needed to process
run for four crawling intervals of 15 minutes each and and store the (fewer) articles sent from the filters. One
the logs were checked at the end of every experiment tavay to lower filter selectivity may be to assign subscrip-
confirm that none of the reflectors dropped any articlegions to filters based on similarity (rather than the current
(or article contents) to save memory (a mechanism inrandom assignment); if all of the subscriptions on a fil-
voked when available memory runs low, as discussed inter tend towards a single, related set of topics, then more

5 o _ articles may fail to match any those subscriptions.

We feel that the 100 Mbps bandwidth figure is not unreason- . .
able; bandwidth measurements from PlanetLab indicate that the me- We are also interested in tirera-network latencyor
dian inter-node bandwidth across the Internet is at least this large [26]an updated article passing through the three tiers of the

70 T T T
90th-percentile latencies m—

1 F‘F
0.9 f Fa 50th-percentile latencies
i / 60 250K feed
0.8 40M subs

g
0.7 § 50
1‘ ! 2 100K feeds
0.6 = 1M subs
j }’ g 40
w [}
a L
g o5 / g
id < 30 500K feeds
0.4 g 20M subs
/ / :
03 H ; & 20
F ,.f =] 1M feeds
0.2 5 e - 10M subs
j’ L 100k feeds, 1M subscriptions —+— 10
0.1 P 250k feeds, 40M subscriptions B
. / 500k feeds, 20M subscriptions -+~
0 /-’" : ™ fequ, 10M sqbscription§ a8 o
0 10 20 30 40 50 60 70 200 400 600 800 1000 1200 1400 1600
Intra-network latency (seconds) Subscriptions per Filter (K)

Figure 13: CDF of intra-network latency for various Figure 14:Intra-network latency as a function of subscrip-

topologies. This experiment shows that the intra-network la- tions per Filter. This figure shows the relationship between

tency is largely a factor of the processing load on filter and intra-network latency and the number of subscriptions stored

reflectors. on each Filter (note that in each of these topologies, the num-
ber of filters equals the number of reflectors, and thus the x-axis
is equivalent to “Subscriptions per Reflector (K)").

Cobra network. To gather this data, we instrumented the
crawler, filter, and reflector to send a packet to a centragcaled to handle more subscriptions and more users, Co-
logging host every time a given article was (1) gener-pra will naturally load-balance across multiple hosts in
ated by the crawler, (2) received at a filter, (2) matchedeach tier, keeping latencies low.
by the filter, and (3) delivered to the reflector. Although Note that the user’q)erceived update |atencis
network latency between the logging host and the Cobrgounded by the sum of thatra-network latencyonce
nodes can affect these results, we believe these latencigg article is crawled by Cobra, and th@wling interval
to be small compared to the Cobra overhead. that is, the rate at which source feeds are crawled. In our
Figure 13 shows a CDF of the latency for each ofcurrent system, we set the crawling interval to 15 min-
the four topologies. As the figure shows, the fastest uputes, which dominates the intra-network latencies shown
date times were observed on the 1M feeds / 10M sub# Figure 13. The intra-network latency is in effect the
topology, with a median latency of 5.06 sec, whereasminimum latency that Cobra can support, if updates to
the slowest update times were exhibited by the 250Kfeeds could be detected instantaneously.
feeds / 40M subs topology, with a median latency of . .
34.22 sec. However, the relationship is not simply that4'4 Comparison to other search engines
intra-network latency increases with the number of users&iven the number of other blog search engines on the In-
the median latency of the 100K feeds / 1M subs topologyternet, we were curious to determine how well Cobra’s
was 30.81 sec - nearly as slow as the 250K feeds / 40Mipdate latency compared to these sites. We created blogs
subs topology. Instead, latency appears more closel¢n two popular blogging sites, LiveJournal and Blog-
related to the number of subscriptions stopstt node ger.com, and posted articles containing a sentence of sev-
(rather than in total), as shown in Figure 14. eral randomly-chosen words to each of these bfogée

As mentioned at the end of section 3.2, nodes are abl1en séarched for our blog postings on three sites: Feed-
to throttle the rate at which they are passed data frontte"> Blogdigger, and Google Blog Search, polling each
other nodes. This is the primary source of intra-networkS!t€ at 5 sec intervals. _
latency; article updates detected by crawlers are delayed We cre_zated our blogs at Igast 24 hours prior to pos-
in reaching reflectors because of processing congestiolf9: 10 give the search engines enough time to index
on filters and/or reflectors. Since the time for a filter 1€M- Neither Feedster or Blogdigger detecéery of

(or reflector) to process an article is related to the numOUr Postings to these blogs, even after a period of over

ber of subscriptions that must be checked (see figure 10§0Ur months (from the initial paper submission to the fi-

topologies with larger numbers of subscriptiqes node Nl camera-ready). We surmise that our blog was not
exhibit longer processing times, leading to rate-throttling'nd€xed by these engines, or that our artificial postings
of upstream services and thus larger intra-network latenere screened out by spam filters used by these sites.
cies. Figure 14 shows a clear relationship between the ©00dle Blog Search performed incredibly well, with
number of subscriptions per node and the intra-networi@ detection latency as low as 83 seconds. In two out
latencies. However, even in the worst of these cases, the s, example posting was “certified venezuela gribble spork.” Un-

latencies are still fairly low overall. As the system is surprisingly, no extant blog entries matched a query for these terms.

of five cases, however, the latency was 87 minutes and Unlike Web search engines, it is unclear what consti-
6.6 hours, respectively, suggesting that the performanctutes a good ranking function for search results on RSS
may not be predictable. The low update latencies ardeeds. For example, the link-based context such as that
likely the result of Google using ping service which used by PageRank [23] may need to be modified to be
receives updates from the blog site whenever a blog iselevant to Web feeds such as blog postings, which have
updated [1]. The variability in update times could be duefew inbound links but often link to other (static) Web
to crawler throttling: Google’s blog indexing engine at- pages. Incorporating this contextual information is ex-
tempts to throttle its crawl rate to avoid overloading [16]. tremely challenging given the rapidly-changing nature of
As part of future work, Cobra could be extended to pro-Web feeds.
vide support for a ping service and to tune the crawl rate Another open question is how to rapidly discover new
on a per-site basis. Web feeds and include them into the crawling cycle. Ac-
We also uncovered what appears to be a bug ircording to one report [38], over 176,000 blogs were cre-
Google’s blog indexer: setting our unique search termatedevery dayin July 2006. Finding new blogs on pop-
as the title of the blog posting with no article body would ular sites such as Blogger and LiveJournal may be eas-
cause Google’s site to return a bogus results page (witker than more generally across the Internet. While the
no link to the matching blog), although it appears to havecrawler could collect lists of RSS and Atom URLs seen
indexed the search term. Our latency figures ignore thion crawled pages, incorporating these into the crawl-
bug, giving Google the benefit of the doubt although theing process may require frequent rebalancing of crawler
correct result was not returned. load. Finally, exploiting the wide distribution of update
In contrast, Cobra’s average update latency is a functates across Web feeds offers new opportunities for op-
tion of the crawler period, which we set at 15 minutes.timization. If the crawler services could learn which
With a larger number of crawler daemons operating infeeds are likely to be updated frequently, the crawling
parallel, we believe that we could bring this interval rate could be tuned on a per-feed basis.
down to match Google’'s performance. To our knowl-
edge, there are no published details on how Google’BeferenceS
blog search is implemented, such as whether it simply[1] Google Blog Search FAQ. http://www.google.com/

, . . help/blogsearch/about_pinging.html .
leverages Google’s static web page indexer. [2] Livejournal. http://www.livejournal.com

[3] Net dictionary index — brown corpus frequent word lising.
http://www.edict.com.hk/lexiconindex/ .

[4] Vmware esx server. http://lwww.vmware.com/

. products/vi/esx/
We have presented Cobra, a system that offers real—tlme[5] Js-javaspaces service specification, 2002. http:

content-based search and aggregation on Web feeds. Co- /lwww.jini.org/nonav/standards/davis/doc/
bra is designed to be incrementally scalable, as well asto specs/html/js-spec.html '
make careful use of network resources through a combi-[6] Tibco publish-subscribe, 2008ttp://www.tibcom.com

nation of offline provisioning, intelligent crawling and '} %%aa%?s'/ 2005._http:/lwww.almaden.ibm.com/cs/

Cf)ntent filtering, and network-aware ClUSteri.ng of ser-] v. Ahmad and U. Cetintemel. Network-Aware Query Processing
vices. Our prototype of Cobra scales well with modest for Stream-based Applications. Proc. of VLDB’04 Toronto,

resource requirements and exhibits low latencies for de—[9 Canada, Aug. 2004.

. .] G. Banga, P. Druschel, and J. Mogul. Resource containers: A
tecting and pUShmg updates to users. new facility for resource management in server systempBrag.

Mining and searching the dynamically varying blo- the Third OSDI (OSDI '99)February 1999.
gosphere offers many exciting directions for future re-[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

: - R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
search. We plan to host Cobra as a long-running service v Nepgebauer, 1 bratt and 2 Warfield. Xen and the Art o

on a local cluster and p_erfprm a r_n_easurement study genii] p. Bogatin. Yahoo Searches More Sophisticated and Spe-
erated from real subscription activity. We expect our ex- cific. http://blogs.zdnet.com/micro-markets/

; ; ; index.php?p=27 , May 18 2006.
perience to inform our choice of parameters, such as how

f .. h dh h [12] N. Carriero and D. Gelernter. Linda in Conte&tommunications
often to re-provision the system and how to set the num-=""" ¢ o Acj 32(4):444-458, Apr. 1989.

ber of articles cached for users (perhaps adaptively, dg13] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evalua-
pending on individual user activity). We also plan to in- tion of a Wide-Area Event Notification ServicCM Transac-
vestigate whether more sophisticated filtering techniques _ 11onS on Computer Systenid(3):332-383, 2001. .

. . . 14] U. Centintemel, M. Cherniack, J.-H. Hwang, W. Lindner,
are desirable. Our current matching algorithm does no A. ag S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and
rank results by relevance, but rather only by date. Like- S.Z. k. The Design of the Borealis Stream Processing Engine. In
wise, the algorithm is unconcerned with positional char- 15 '\P/I'OghOf C_IDE l:sllgmla:(, Qﬁ, Jan. I\jog5.I e otal Scatan

.. . . erniack, H. balakrisnnan, . balazinska, et al. calanle
acteristics of matched keywords; as long as all keywordé Distributed Stream Processing. Roc. of CIDR Asilomar, CA,

match an article, it is delivered to the user. Jan. 2003.

5 Conclusions and Future Work

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

M. Cutts. More webmaster console goodness. Matt Cutts: Gad{39]
gets, Google, and SEO (bloghttp://www.mattcutts.
com/blog/more-webmaster-console-goodness/ ,

October 20 2006.

F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decen- [40]
tralized Network Coordinate System. i GCOMM Aug. 2004.

F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, and K. A.
Ross. Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe Systems. Boceedings of ACM SIGMQD [41]
2001.

A. Fox and E. A. Brewer. Harvest, yield and scalable tolerant
systems. IrProc. the 1999 Workshop on Hot Topics in Operating
SystemgsRio Rico, Arizona, March 1999. [

M. J. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS:
Anycast for Any Service. lifroc. USENIX/ACM NSDBEan Jose,
CA, 2006. 43

P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet:
An Architecture for a World-Wide Sensor WelEEE Pervasive
Computing 2(4), Oct. 2003.

B. Glade, K. Birman, R. Cooper, and R. van Renesse. Light-
Weight Process Groups in the ISIS Systdhistributed Systems
Engineering 1(1):29-36, 1993.

S. Grin and L. Page. The Anatomy of a Large-scale Hypertextual
Web Search Engine. MVWW?7 1998.

K. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimat-
ing Latency between Arbitrary Internet End Hosts. Sacond
Usenix/ACM SIGCOMM Internet Measurement Workshéqv.
2002.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. tt Shenker, and |. Stoica. Querying the Internet with PIER.
In Proc. of VLDB Berlin, Germany, Sept. 2003.

S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Mea-
suring Bandwidth between PlanetLab Nodes. Phoc. Passive
and Active Measurement Worksh@woston, MA, March 2005.

L.F.Cabera, M. Jones, and M. Theimer. Herald: Achieving a
Global Event Notification Service. Miorkshop on Hot Topics in
Operating System&001.

H. Liu, V. Ramasubramanian, and E. Sirer. Client Behavior and
Feed Characteristics of RSS, a Publish-Subscribe System for Web
Micronews. InProc. of ACM Internet Measurement Conference
Oct. 2005.

J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient Match-
ing for Web-Based Publish-Subscribe SystemsPioceedings

of the 7th International Conference on Cooperative Information
Systems (CooplS2000.

L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Mui. Experi-
ences Building PlanetLal®SD|, Nov. 2006.

P. PietzuchHermes: A Scalable Event-Based MiddlewarhD
thesis, University of Cambridge, Feb. 2004.

P. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based
Middelware Architecture. Iist Workshop on Distributed Event-
Based Systempul 2002.

P. Pietzuch, J. Ledlie, J. Shneidman, M. R. M. Welsh, and
M. Seltzer. Network-Aware Operator Placement for Stream-
Processing Systems. I6DE, Apr. 2006.

V. Ramasubramanian, R. Peterson, and G. Sirer. Corona: A High
Performance Publish-Subscribe System for the World Wide Web.
In NSDI, 2006.

A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized
Object Location and Routing for Large-Scale Peer-to-Peer Sys-
tems. InMiddleware) Nov. 2001.

A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infras-
tructure. INNGC, 2001.

B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Con-
tent Based Routing with Elvin. IRroceedingsof AUUG2K000.

D. Sifry. State of the Blogosphere, August 2088p://Awww.
sifry.com/alerts/archives/000436.html

R. Strom, G. Banavar, T. Chandra, M. Kaplan, and K. Miller.
Gryphon: An Information Flow Based Approach to Message
Brokering. InProceedings of the International Symposium on
Software Reliability Engineerind.998.

R. van Renesse, K. Birman, and W. Vogels. A Robust and Scal-
able Technology for Distributed Systems Monitoring, Manage-
ment, and Data Mining.ACM Transactions on Computer Sys-
tems 21(2):164-206, 2003.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks.
In OSD|, Dec. 2002.

42] B. Wong, A. Slivkins, and G. Sirer. Meridian: A Lightweight

Network Location Service without Virtual Coordinates. $tG-
COMM, Aug. 2005.

S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz.
Bayeux: An Architecture for Scalable and Fault-tolerant Wide-
Area Data Dissemination. INOSSDAYJune 2001.

